Несобственные интегралы
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Несобственный интеграл — в некотором смысле обобщение интеграла на случай .
Некоторые определения
| Определение: |
| Пусть — конечно, , . Тогда определим |
| Определение: |
| Если предел конечен, то такой интеграл называют сходящимся. |
Аналогично определяется .
| Определение: |
| . При этом, и должны сходиться. |
Критерий Коши существования несобственного интеграла
Пусть . Применяя критерий Коши существования предела функции, приходим к критерию Коши сходимости несобственного интеграла:
сходится .
Знакопостоянная функция
Рассмотрим важный частным случай — подынтегральная функция неотрицательна.
Специфика этого случая в том, что все такие интегрируемые функции разбиваются на два класса: сходящиеся() и расходящиеся().
При исследовании таких функции применяют принцип сравнения.
| Определение: |
Интегралы и равносходятся, если выполнено одно из следующих условий:
|
| Утверждение: |
1. Пусть , , — сходящаяся. Тогда — тоже сходящаяся. 2. Пусть , , . Тогда и равносходятся. |
|
1. Пусть . Тогда . В силу сходимости интеграла , . Тогда . Значит, он ограничен, и интеграл сходится. 2. В силу наложенных на функции условий, . Возьмём . . Подставим и домножим на большее нуля . . Тогда, по первому пункту этого утверждения, так как неравенство двойное, требуемое доказано. |
Наиболее часто интеграл функции пытаются сравнивать с интегралом вида
Он замечателен тем, что — сходится .
Ситуация резко усложняется, если рассматривать интегралы незнакопостоянной функции.
Интеграл Дирихле
| Определение: |
| — интеграл Дирихле. Он сходится к , однако, мы это пока не умеем доказывать |
Заметим, что так как , то в нуле никакой внезапной гадости не будет.
Для таких интегралов с незнакопостоянной функцией принята следующая терминология:
| Определение: |
| Если — сходится, то говорят, что абслоютно сходится. |
| Утверждение: |
Если интеграл абсолютно сходится, то он сходится |
| Ну очевидно же... |
| Определение: |
| Если расходится, но сходится, то говорят, что — условно-сходящийся |
Метод исследования
Наибольшие сложности возникают при исследовании условно-сходящихся интегралов. Как правило, данные интегралы исследуются творческим применением формулы интегрирования по частям для определённого интеграла.
Рассмотрим .
Применим формулу интегрирования по частям:
Пусть убывает и стремится к нулю.
Пусть
Получаем
Но при , и (по формуле Ньютона-Лейбница). Тогда получаем, что, так как правая часть стремится к нулю, , интеграл, по принципу Коши, сходится.
| Утверждение: |
Интеграл Дирихле сходится |
|
Рассмотрим интеграл Дирихле и положим , . , . Все условия предыдущих выкладок выполнены, значит, интеграл Дирихле — сходящийся. |
| Утверждение: |
Интеграл Дирихле сходится лишь условно. |
|
Для доказательства утверждения нужно доказать, что — расходится. Очевидно, достаточно доказать это для . Допустим обратное. Пусть этот интеграл сходится. Так как , . По принципу сравнения, — сходится. Понизим степень : Тогда получаем, что . Заметим, что первое слагаемое расходится(это логарифм), а второе аналогично доказанному выше про , сходится. Получили, что сходящийся интеграл расходится, то есть, получено противоречие. Значит, интеграл Дирихле сходится лишь условно. |