Конструирование комбинаторных объектов и их подсчёт
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
| Определение: |
| , — множества из различных объектов. — количество объектов веса от до из , а — соответственно для . |
В дальнейшем, будем считать что нет объектов веса , так как в противном случае существует бесконечное количество рассматриваемых комбинаторных объектов любого веса и подсчет теряет смысл, или подсчет сводится к рассматриваемому случаю. Отведем данный вес под пустое множество (то есть ).
Содержание
Последовательности (Seq)
| Определение: |
| — множество всех последовательностей из элементов . — количество последовательностей веса . |
| Утверждение: |
. Причем . |
|
, так как есть единственный способ составить пустую последовательность. Докажем по индукции. База .
Переход.
|
Подсчет битовых векторов длины
Пусть , — множество всех битовых векторов.
Тогда, .
Подсчет Seq из маленьких и больших элементов
Пусть , , — множество всех последовательностей из маленьких и больших элементов, .
Тогда, , где — -ое число Фибоначчи [1].
Множества (PSet)
| Определение: |
| — множество всех множеств, составленных из элементов . — количество множеств суммарного веса . |
| Утверждение: |
, где — количество таких множеств, которые содержат объекты, вес которых не больше чем . Причем , а , . |
|
, так как не набирать никакой вес есть один способ, а , , так как нельзя набрать положительный вес из ничего. Изначально у нас есть только пустое множество веса . Рассмотрим очередной этап вычисления . Для данных и у нас уже имеется множество, которое необходимо дополнить. Мы можем сделать это добавляя от до элементов веса (при условии, что столько различных элементов имеется) в данное множество. Выбрать нужное количество элементов можно с помощью сочетаний. Следовательно, у нас образуется новые множества, которые будет необходимо дополнить элементами веса меньше (чтобы избежать повторений) суммарного веса , где — количество элементов веса которое мы добавили в данное множество. Довольно легко заметить, что данные операции полностью соответствуют описанной выше формуле. |
Количество PSet из элементов 0 и 1
Пусть , — множество всех множеств из , . Тогда , где .
- .
- .
- .
- .
- Для , .
Количество разбиений на слагаемые
Пусть , — множество всех разбиений на слагаемые, . Тогда,
- , где , что, как несложно заметить, соответствует формуле, полученной методом динамического программирования.
Мультимножества (MSet)
| Определение: |
| — множество всех мультимножеств [2] из элементов . — количество мультимножеств из объектов суммарного веса . |
| Утверждение: |
, где — количество таких мультимножеств, которые содержат объекты, вес которых не больше чем . Причем , а , . |
|
, так как не набирать никакой вес есть один способ, а , , так как нельзя набрать положительный вес из ничего. Рассуждения аналогичны рассуждениям , однако теперь мы можем брать один и тот же элемент несколько раз. То есть для подсчета вместо обычных сочетаний нужно использовать сочетания с повторениями. |
Количество MSet из элементов 0 и 1
Пусть , — множество всех мультимножеств из , .
- Тогда, , где
- .
- .
- .
- .
- .
Помеченные унициклические графы
| Определение: |
| называется связный граф, содержащий один простой цикл и не содержащий петель и кратных рёбер. — количество унициклических графов из вершин, . |
| Утверждение: |
. |
| Для всех найдем число способов выбрать вершины для цикла длины , их количество равняется . Найдём число способов упорядочить выбранные вершины: заметим что каждый цикл длины порождается способами (у каждой перестановки существует циклический сдвиг и одно зеркальное представление), поэтому существует различных циклов. Найдём количество способов достроить полученный цикл до связного унициклического графа. Заметим, что при удалениии всех ребер цикла граф станет лесом из деревьев и вершин. Используя кодирование Прюфера, получим, что количество таких лесов равно . Нахождение количества таких лесов аналогично нахождению количества помеченных деревьев. Значит, количество унициклических графов порядка равно . |
Связные графы
| Определение: |
| - количество связных графов с вершинами. |
| Лемма: |
, где — количество помеченных графов с вершинами. |
| Утверждение: |
, — количество связных графов с вершинами. |
|
Рассмотрим соотношение количества связных и несвязных графов. Очевидно, что , где — количество несвязных графов. Также , где — количество корневых[3] несвязных графов. Вычислим . Заметим, что, так как граф является несвязным, то в нём найдётся компонента связности, внутри которой лежит корневая вершина, а остальной граф будет представлять собой одну или более компонент связности. Переберем количество вершин в компоненте связности, содержащей корневую вершину. . Для каждого посчитаем количество таких графов. Количество способов выбрать вершин из равно . Оставшийся граф является произвольным, таким образом, количество помеченных графов в нем равно . Количество способов выделить корневую вершину в компоненте связности из вершин равно . Также количество связных графов в компоненте связности с корневой вершиной равно . Итого, для фиксированного количество корневых несвязных графов равно . Значит, количество несвязных графов с вершинами равно
Таким образом, количество связных графов с вершинами равно |
Пары (Pair)
| Определение: |
| — множество всех пар объектов, составленных из элементов и . — количество пар из объектов суммарного веса . |
| Утверждение: |
. |
| Чтобы составить пару веса нужно взять один элемент веса из и элемент веса из , что полностью соответствует данной формуле. |
Циклы (Cycle)
| Определение: |
| — множество всех циклов [4] из элементов . — количество циклов веса . |
| Утверждение: |
, где , — количество циклов веса длины , а — количество стабилизаторов для циклического сдвига на . |
| Очевидно, что длина цикла веса может быть от до . Посмотрим сколько существует циклов каждой длины. Это можно сделать по лемме Бёрнсайда. |
| Лемма: |
Найдем в общем случае. |
| Доказательство: |
|
Пусть — наибольший общий делитель. Заметим, что в -ой перестановке на -ой позиции стоит элемент . Также, заметим, что элемент переходит в элемент , где . Из этого следует, что длина цикла для -ой перестановки равна , где — наименьшее общее кратное. Также заметим, что если вес нельзя равномерно распределить по всей длине цикла, то стабилизатор равен .
Где — число способов упорядочить набор из элементов суммарного веса и , причем . |
Задача об ожерельях
Решим данным способом задачу об ожерельях. Пусть необходимый вес — это количество бусинок, а — количество цветов. Причем каждая бусинка весит . То есть .
так как невозможно набрать вес менее, чем бусинами при весе бусин .
. Поскольку все бусины имеют одинаковый вес , то
В итоге, .
Метод производящих функций
Такие большие группы часто анализируют с помощью производящих функций. Один из популярных методов — метод символов [5]. Он использует внутреннюю структуру объектов для получения производящих функций. В случае непомеченных объектов, как и в анализе в нашей статье, считается, что нет объектов нулевого веса. Иногда для удобства их добавляют, чтобы показать наличие одного пустого множества. При непомеченных объектах рассмотренные классы имеют следующие производящие функции:
| , где — функция Эйлера. |
|---|
Однако порой некоторые комбинаторные классы удобнее обозначать как помеченные. Например, — помеченные графы. С помеченными объектами используется экспоненциальная производящая функция [6]. В данном случае для некоторых рассмотренных классов используются следующие производящие функции:
| . |
|---|
Ограниченные конструкции
Иногда в анализе необходимо ввести ограничение на количество компонентов. Такой случай обозначается нижним коэффициентом (например, — компонентов).
Непосредственной формулой для производящих функций является диагональ декартова произведения [7] , определяемая как . Тогда имеет место соотношение .
Диагональная конструкция позволяет получить доступ к классу всех неупорядоченных пар из различных элементов из , то есть к . Прямое выражение выполняется следующим способом: неупорядоченная пара связана с двумя упорядоченными парами и , кроме тех случаев, когда , то есть когда пара лежит на диагонали декартова произведения. Другими словами, .
Это, в свою очередь, означает что . Таким образом можно выразить . Аналогично для , и :
Аналогичные рассуждения можно провести и для больших , однако расчеты быстро становятся сложными. Классический способ исправления таких вопросов — теорема Пойа.
Однако в методе символов предлагается более глобальный подход, основанный на многомерных производящих функциях и использующий ряд Бюрмана-Лагранжа [8]. В общем случае, используя метод символов, производящие функции ограниченных конструкций можно подсчитать следующим способом:
| , где — функция Эйлера. |
|---|
См.также
- Лемма Бёрнсайда и Теорема Пойа
- Числа Каталана
- Генерация комбинаторных объектов в лексикографическом порядке
- Подсчет деревьев
- Метод производящих функций