Алгоритм поиска подстроки в строке с помощью суффиксного массива
Рассмотрим такую задачу: у нас есть образец суффиксный массив , построенный для строки . Необходимо найти все вхождения образца в строку .
, строка ,Для наглядности рассмотрим такой пример: образец
Вот суффиксный массив для данной строки:
# | суффикс | номер суффикса |
1 | i | 11 |
2 | ippi | 8 |
3 | issippi | 5 |
4 | ississippi | 2 |
5 | mississippi | 1 |
6 | pi | 10 |
7 | ppi | 9 |
8 | sippi | 7 |
9 | sissippi | 4 |
10 | ssippi | 6 |
11 | ssissippi | 3 |
Способы поиска
Простейший поиск подстроки
Простейший способ узнать, встречается ли образец в тексте, используя суффиксный массив, это взять первый символ образца и бинарным поиском по суффиксному массиву (массив у нас отсортирован) найти диапазон с суффиксами, начинающимися на такую же букву. Так как все элементы в полученном диапазоне отсортированы, а первые символы одинаковые, то оставшиеся после отбрасывания первого символа суффиксы тоже отсортированы. А значит, можно повторять процедуру сужения диапазона поиска уже по второму, затем третьему и так далее символу образца до получения либо пустого диапазона, либо успешного нахождения всех символов образца. Бинарный поиск работает за
В примере поиск будет выглядеть так:
образец | iss | iss | iss |
i | i | i | |
ippi | ippi | ippi | |
issippi | issippi | issippi | |
ississippi | ississippi | ississippi | |
mississippi | mississippi | mississippi | |
pi | pi | pi | |
ppi | ppi | ppi | |
sippi | sippi | sippi | |
sissippi | sissippi | sissippi | |
ssippi | ssippi | ssippi | |
ssissippi | ssissippi | ssissippi |
Как видно из примера образцу удовлетворяют суффиксы 3 и 4, начинающиеся на 5 и 2 позициях в строке соответственно.
Псевдокод
Поиск диапазона
/*p - образец n - длина образца left - левая граница диапазона // изначально равна единице right - правая граница диапазона // изначально равна длине строки lh - вспомогательная переменная для определения левой границы диапазона rg - вспомогательная переменная для определения правой границы диапазона find - функция уточнения диапазона элементы строк и массивов нумеруются с единицы*/ for i = 1 to n { lh = n + 1 rh = 0 find(left, right, i) left = lh right = rh } if (left != 0 && right != n + 1) { // если диапазон не пуст yield left // вывод левой границы диапазона yield right // вывод правой границы диапазона } else yield "No matches" // вывод информации об отсутствии вхождений
Бинарный поиск для уточнения диапазона - функция find(l, r, k)
/*l - левая граница диапазона при поиске r - правая граница диапазона при поиске k - номер символа образца, с которым происходит проверка на данном шаге s - строка length - длина строки array - суффиксный массив x - индекс, стоящий по середине между l и r*/ if (l > r) return x = (l + r) / 2 if (array[x] + k - 1 <= length){ if (s[array[x] + k - 1] == p[k]){ if (x < lh) lh = x if (x > rh) rh = x find(l, x - 1, k) find(x + 1, r, k) } else { if (s[array[x] + k - 1] > p[k]) { find(l, x - 1, k) } else { if (s[array[x] + k - 1] < p[k]) { find(x + 1, r, k) } } else { find(l, x - 1, k) find(x + 1, r, k) }
Более быстрый поиск
На самом деле нам не обязательно сравнивать всю искомую строку с элементами суффиксного массива. На каждой итерации бинарного поиска мы уточняем некий диапазон, внутри которого может находиться искомый элемент. Все строки в таком диапазоне в некотором смысле похожи. А именно, у данных строк может быть общий префикс с искомой строкой, так как у тех, что остались вне диапазона, общего префикса уж точно не будет (в том смысле, что мы не рассматриваем уже обработанную часть образца как часть префикса).
Пусть границы нашего диапазона на каком-то шаге - это L и R. Допустим мы знаем длину общего префикса образца с краями текущего диапазона: l - общий префикс образца и левого края, r - общий префикс образца и правого края, где l = lcp(p, array[L]), r = lcp(p, array[R]) (lcp - longest common prefix). Тогда справедливо сделать пару утверждений.
Первое утверждение заключается в том, что для любой строки внутри диапазона lcp не меньше, чем минимум из l и r. Если бы это было не так, то значит при неизменной начальной части префикса была бы позиция, где символ сначала совпадал бы с соответствующим символом образца, потом не совпадал, а потом снова совпадал. Это противоречило бы отсортированности диапазона. Важно хорошо проникнуться этой идеей, так как дальше мы ее будем использовать как нечто само собой разумеющееся. Второе утверждение очевидно: если общий префикс образца и любой строки внутри диапазона не меньше m = min(l,r), то m символов можно пропускать сразу, зная, что они совпадают в любом случае, и сравнивать только начиная с m + 1 символа.