Задача о расстоянии Дамерау-Левенштейна
| Определение: | 
| Расстояние Дамерау-Левенштейна (англ. Damerau-Levenshtein distance) между двумя строками, состоящими из конечного числа символов — это минимальное число операций вставки, удаления, замены одного символа и транспозиции двух соседних символов, необходимых для перевода одной строки в другую. | 
Является модификацией расстояния Левенштейна, отличается от него добавлением операции перестановки.
Содержание
Практическое применение
Расстояние Дамерау-Левенштейна, как и метрика Левенштейна, является мерой "схожести" двух строк. Алгоритм его поиска находит применение в реализации нечёткого поиска, а также в биоинформатике (сравнение ДНК), несмотря на то, что изначально алгоритм разрабатывался для сравнения текстов, набранных человеком (Дамерау показал, что 80% человеческих ошибок при наборе текстов составляют перестановки соседних символов, пропуск символа, добавление нового символа, и ошибка в символе. Поэтому метрика Дамерау-Левенштейна часто используется в редакторских программах для проверки правописания).
Упрощённый алгоритм
Не решает задачу корректно, но бывает полезен на практике.
Здесь и далее будем использовать следующие обозначения: и — строки, между которыми требуется найти расстояние Дамерау-Левенштейна; и — их длины соответственно.
Рассмотрим алгоритм, отличающийся от алгоритма поиска расстояния Левенштейна одной проверкой (храним матрицу , где — расстояние между префиксами строк: первыми символами строки и первыми символами строки ). Рекуррентное соотношение имеет вид:
Ответ на задачу — , где
Таким образом для получения ответа необходимо заполнить матрицу , пользуясь рекуррентным соотношением. Сложность алгоритма: . Затраты памяти: .
Псевдокод алгоритма:
int DamerauLevenshteinDistance(S: char[1..M], T: char[1..N]; deleteCost, insertCost, replaceCost, transposeCost: int):
    d: int[0..M][0..N]
      
    // База динамики
    d[0][0] = 0
    for i = 1 to M
        d[i][0] = d[i - 1][0] + deleteCost
    for j = 1 to N
        d[0][j] = d[0][j - 1] + insertCost
    
    for i = 1 to M
        for j = 1 to N           
            // Стоимость замены
            if S[i] == T[j]
               d[i][j] = d[i - 1][j - 1]
            else
               d[i][j] = d[i - 1][j - 1] + replaceCost                   
            d[i][j] = min(
                             d[i][j],                                     // замена
                             d[i - 1][j    ] + deleteCost,                // удаление
                             d[i    ][j - 1] + insertCost                 // вставка               
                         )
            if(i > 1 and j > 1 and S[i] == T[j - 1] and S[i - 1] == T[j])
                d[i][j] = min(
                                  d[i][j],
                                  d[i - 2][j - 2] + transposeCost         // транспозиция
                             )
    return d[M][N]
Контрпример: и . Расстояние Дамерау-Левенштейна между строками равно , однако функция приведённая выше возвратит . Дело в том, что использование этого упрощённого алгоритма накладывает ограничение: любая подстрока может быть редактирована не более одного раза. Поэтому переход невозможен, и последовательность действий такая: .
Упрощенный алгоритм Дамерау-Левенштейна не является метрикой, так как не выполняется правило треугольника: .
Условие многих практических задач не предполагает многократного редактирования подстрок, поэтому часто достаточно упрощённого алгоритма. Ниже представлен более сложный алгоритм, который корректно решает задачу поиска расстояния Дамерау-Левенштейна.
Корректный алгоритм
В основу алгоритма положена идея динамического программирования по префиксу. Будем хранить матрицу , где — расстояние Дамерау-Левенштейна между префиксами строк и , длины префиксов — и соответственно.
Для учёта транспозиции потребуется хранение следующей информации. Инвариант:
— индекс последнего вхождения в
— на -й итерации внешнего цикла индекс последнего символа
Тогда если на очередной итерации внутреннего цикла положить: , то
, где
Доказательства требует лишь формула , смысл которой — сравнение стоимости перехода без использования транспозиции со стоимостью перехода, включающего в число операций транспозицию; остальные формулы обосновываются так же, как и в доказательстве алгоритма Вагнера-Фишера. Но действительно, при редактировании подпоследовательности несколько раз всегда существует оптимальная последовательность операций одного из двух видов:
- Переставить местами соседние символы, затем вставить некоторое количество символов между ними;
- Удалить некоторое количество символов, а затем переставить местами символы, ставшие соседними.
Тогда если символ встречался в на позиции , а символ встречался в на позиции ; то может быть получена из удалением символов , транспозицией ставших соседними и и вставкой символов . Суммарно на это будет затрачено операций, что описано в . Поэтому мы выбирали оптимальную последовательность операций, рассмотрев случай с транспозицией и без неё.
Сложность алгоритма: . Затраты памяти: . Однако скорость работы алгоритма может быть улучшена до .
Псевдокод алгоритма:
int DamerauLevenshteinDistance(S: char[1..M], T: char[1..N]; deleteCost, insertCost, replaceCost, transposeCost: int):
    // Обработка крайних случаев
    if (S == "")
        if (T == "")
            return 0
        else
            return N
    else if (T == "")
        return M
    D: int[0..M + 1][0..N + 1]   // Динамика
    INF = (M + N) * max(deleteCost, insertCost, replaceCost, transposeCost)  // Большая константа
    
    // База индукции
    D[0][0] = INF
    for i = 0 to M
        D[i + 1][1] = i * deleteCost
        D[i + 1][0] = INF
    for j = 0 to N
        D[1][j + 1] = j * insertCost
        D[0][j + 1] = INF
    
    lastPosition: int[0..количество различных символов в S и T]
    //для каждого элемента C алфавита задано значение lastPosition[C] 
    
    foreach (char Letter in (S + T))
        lastPosition[Letter] = 0
    
    for i = 1 to M
        last = 0
        for j = 1 to N
            i' = lastPosition[T[j]]
            j' = last
            if S[i] == T[j]
                D[i + 1][j + 1] = D[i][j]
                last = j
            else
                D[i + 1][j + 1] = min(D[i][j] + replaceCost, D[i + 1][j] + insertCost, D[i][j + 1] + deleteCost)
            D[i + 1][j + 1] = min(D[i + 1][j + 1], D[i'][j'] + (i - i' - 1)  deleteCost + transposeCost + (j - j' - 1)  insertCost)
        lastPosition[S[i]] = i
     
    return D[M][N]
См. также
- Задача о наибольшей общей подпоследовательности
- Задача о выводе в контекстно-свободной грамматике, алгоритм Кока-Янгера-Касами
- Динамическое программирование по профилю
Источники информации
- Wikipedia — Damerau-Levenshtein distance
- Википедия — Расстояние Дамерау-Левенштейна
- Хабрахабр — Нечёткий поиск в тексте и словаре
- Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн Алгоритмы: построение и анализ — 3-е изд. — М.: «Вильямс», 2013. — с. 440. — ISBN 978-5-8459-1794-2
