Задача о числе путей в ациклическом графе

Материал из Викиконспекты
Версия от 19:37, 4 сентября 2022; Maintenance script (обсуждение | вклад) (rollbackEdits.php mass rollback)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск
Задача:
Задан ациклический граф [math]G[/math] и две вершины [math]s[/math] и [math]t[/math]. Необходимо посчитать количество путей из вершины [math]s[/math] в вершину [math]t[/math] по рёбрам графа [math]G[/math].



Решение задачи

Перебор всех возможных путей

Небольшая модификация алгоритма обхода в глубину. Запустим обход в глубину от вершины [math]s[/math]. При каждом посещении вершины [math]v[/math] проверим, не является ли она искомой вершиной [math]t[/math]. Если это так, то ответ увеличивается на единицу и обход прекращается. В противном случае производится запуск обхода в глубину для всех вершин, в которые есть ребро из [math]v[/math], причем он производится независимо от того, были эти вершины посещены ранее, или нет.

Функция [math]\mathrm{countPaths(g, s, t)}[/math] принимает граф [math]g[/math] в виде списка смежности, начальную вершину [math]s[/math] и конечную вершину [math]t[/math].

countPaths(g, v, t)
    if v == t
        return 1
    else
        s = 0
        for to in g[v]
            s += countPaths(g, to, t)
        return s

Время работы данного алгоритма в худшем случае [math]O(Ans)[/math], где [math]Ans[/math] — число путей в графе из [math]s[/math] в [math]t[/math]. Например, на следующем графе данный алгоритм будет иметь время работы [math]O(2^{n/2})[/math]. Если же использовать метод динамического программирования, речь о котором пойдет ниже, то асимптотику можно улучшить до [math]O(n)[/math].

Пример графа, на котором алгоритм имеет время работы [math]O(2^{n/2})[/math]

Метод динамического программирования

Пусть [math]P(v)[/math] — число путей от вершины [math] s [/math] до вершины [math] v [/math]. Тогда [math]P(v)[/math] зависит только от вершин, ребра из которых входят в [math]v[/math]. Тогда [math]P(v) = \sum\limits_{c}P(c)[/math] таких [math]c[/math], что есть ребро из [math]c[/math] в [math]v[/math]. Мы свели нашу задачу к меньшим подзадачам, причем мы также знаем, что [math]P(s) = 1[/math]. Это позволяет решить задачу методом динамического программирования.

Псевдокод

Пусть [math]s[/math] — стартовая вершина, а [math]t[/math] — конечная, для нее и посчитаем ответ. Будем поддерживать массив [math]d[/math], где [math]d[v][/math] — число путей из вершины [math] s [/math] до вершины [math]v[/math] и массив [math]w[/math], где [math]w[v] = true[/math], если ответ для вершины [math]v[/math] уже посчитан, и [math]w[v] = false[/math] в противном случае. Изначально [math]w[i] = false[/math] для всех вершин [math]i[/math], кроме [math]s[/math], а [math]d[s] = 1[/math]. Функция [math]\mathrm{count(v)}[/math] будет возвращать ответ для вершины [math]v[/math]. Удобнее всего это реализовать в виде рекурсивной функции с запоминанием. В этом случае значения массива [math]d[/math] будут вычисляться по мере необходимости и не будут считаться лишний раз:

[math] count(v) = \left \{ \begin{array}{ll} d[v], & w[v]=true \\ \sum\limits_{c|cv \in E}count(c), & w[v]=false \end{array} \right. [/math]

count(g, v)
    if w[v]
        return d[v]
    else
        sum = 0
        w[v] = true
        for c in g[v]
            sum += count(g, c)
        d[v] = sum
        return sum

countPaths(g, s, t)
    d[s] = 1
    w[s] = true
    answer = count(t)
    return answer

Значение функции [math]\mathrm{count(v)}[/math] считается для каждой вершины один раз, а внутри нее рассматриваются все такие ребра [math]\{e\ |\ end(e) = v\}[/math]. Всего таких ребер для всех вершин в графе [math]O(E)[/math], следовательно, время работы алгоритма в худшем случае оценивается как [math]O(V+E)[/math], где [math]V[/math] — число вершин графа, [math]E[/math] — число ребер.

Пример работы

Рассмотрим пример работы алгоритма на следующем графе:

Count-path-graph-example.png

Изначально массивы [math]d[/math] и [math]w[/math] инициализированы следующим образом:

вершина S 1 2 3 4 T
w true false false false false false
d 1 0 0 0 0 0

Сначала функция [math]\mathrm{count}[/math] будет вызвана от вершины [math]T[/math]. Ответ для нее еще не посчитан ([math]w[T] = false[/math]), следовательно [math]\mathrm{count}[/math] будет вызвана от вершин [math]3[/math] и [math]4[/math]. Для вершины [math]3[/math] ответ также не посчитан ([math]w[3] = false[/math]), следовательно [math]\mathrm{count}[/math] будет вызвана уже для вершин [math]2[/math] и [math]S[/math]. А вот для них ответ мы уже можем узнать: для [math]2[/math] он равен [math]d[S][/math], так как это [math]S[/math] — единственная вершина, ребро из которой входит в нее. Непосредственно для [math]S[/math] ответ нам также известен. На текущий момент таблица будет выглядеть следующим образом:

вершина S 1 2 3 4 T
w true false true false false false
d 1 0 1 0 0 0

Теперь мы знаем значения для вершин [math]2[/math] и [math]S[/math], что позволяет вычислить [math]d[3] = d[2] + d[S] = 2[/math]. Также обновим значения в массиве [math]w[/math]: [math]w[3] = true[/math].

вершина S 1 2 3 4 T
w true false true true false false
d 1 0 1 2 0 0

В самом начале для вычисления [math]d[T][/math] нам требовались значения [math]d[3][/math] и [math]d[4][/math]. Теперь нам известно значение [math]d[3][/math], поэтому проследим за тем, как будет вычисляться [math]d[4][/math]. [math]\mathrm{d[4] = count(3) + count(2) + count(1)}[/math], но [math]w[3] = true, w[2] = true[/math], следовательно значения [math]d[3][/math] и [math]d[2][/math] мы уже знаем, и нам необходимо вызвать [math]\mathrm{count(1)}[/math]. Ответ для этой вершины равен [math]d[S][/math], так как это единственная вершина, ребро из которой входит в [math]1[/math]. Обновим соответствующие значения массивов [math]d[/math] и [math]w[/math]:

вершина S 1 2 3 4 T
w true true true true false false
d 1 1 1 2 0 0

Теперь нам известны все три значения, требующиеся для вычисления ответа для вершины [math]4[/math]. [math]d[4] = d[3] + d[2] + d[1] = 2 + 1 + 1 = 4[/math]:

вершина S 1 2 3 4 T
w true true true true true false
d 1 1 1 2 4 0

Наконец, вычислим [math]d[T] = d[3] + d[4] = 2 + 4 = 6[/math] и обновим таблицы [math]d[/math] и [math]w[/math]:

вершина S 1 2 3 4 T
w true true true true true true
d 1 1 1 2 4 6

Этот алгоритм позволяет вычислить количество путей от какой-либо вершины [math]S[/math] не только до [math]T[/math], но и для любой вершины, лежащей на любом из путей от [math]S[/math] до [math]T[/math]. Для этого достаточно взять значение в соответствующей ячейке [math]d[/math].

См. также

Источники информации

  • Акулич И.Л. Глава 4. Задачи динамического программирования // Математическое программирование в примерах и задачах. — М.: Высшая школа, 1986. — 319 с. — ISBN 5-06-002663-9..