Сжатое многомерное дерево отрезков
| Задача: |
| Пусть имеется множество , состоящее из взвешенных точек в -мерном пространстве. Необходимо быстро отвечать на запрос о суммарном весе точек, находящихся в -мерном прямоугольнике |
Вообще говоря, с поставленной задачей справится и обычное -мерное дерево отрезков. Для этого достаточно на -том уровне вложенности строить дерево отрезков по всевозможным -тым координатам точек множества , а при запросе использовать на каждом уровне бинарный поиск для установления желаемого подотрезка. Очевидно, запрос будет делаться за времени, а сама структура данных будет занимать памяти.
Оптимизация
Для уменьшения количества занимаемой памяти можно провести оптимизацию -мерного дерева отрезков. Для начала, будем использовать дерево отрезков с сохранением всего подотрезка в каждой вершине. Другими словами, в каждой вершине дерева отрезков мы будем хранить не только какую-то сжатую информацию об этом подотрезке, но и все элементы множества , лежащие в этом подотрезке. На первый взгляд, это только увеличит объем структуры, но не все так просто. При построении будем действовать следующим образом — каждый раз дерево отрезков внутри вершины будем строить не по всем элементам множества , а только по сохраненному в этой вершине подотрезку. Действительно, незачем строить дерево по всем элементам, когда элементы вне подотрезка уже были "исключены" и заведомо лежат вне желаемого -мерного прямоугольника. Такое "усеченное" многомерное дерево отрезков называется сжатым.
Построение дерева
Рассмотрим алгоритм построения сжатого дерева отрезков на следующем примере:
- Cоставим массив из всех элементов множества , упорядочим его по первой координате, построим на нём дерево отрезков с сохранением подмассива в каждой вершине

- Повторим построение дерева для каждого из них (координата последняя, поэтому в вершинах этих деревьев мы уже ничего строить не будем — подмассивы в каждой вершине можно не сохранять)

Псевдокод
build_subarray_tree(element[] array)
{
//построение одномерного дерева отрезков на массиве array с сохранением подмассива в каждой вершине
}
build_normal_tree(element[] array)
{
//построение обычного одномерного дерева отрезков на массиве array
}
get_inside_array(vertex v)
{
//получение подмассива, сохраненного в вершине vertex
}
build_compressed_tree(element[] array, int coordinate = 1) //рекурсивная процедура построения сжатого дерева отрезков
{
if (coordinate < p)
{
sort(array, coordinate); //сортировка массива по нужной координате
segment_tree = build_subarray_tree(array);
for each (vertex v in segment_tree)
{
build_compressed_tree(inside_array(v), coordinate + 1);
}
}
if (coordinate == p)
{
sort(array, coordinate);
build_normal_tree(array);
}
}
Анализ полученной структуры
Легко понять, что сжатое -мерное дерево отрезков будет занимать памяти: превращение обычного дерева в дерево с сохранением всего подотрезка в каждой вершине будет увеличивать его размер в раз, а сделать это нужно будет раз. Но расплатой станет невозможность делать произвольный запрос модификации: в самом деле, если появится новый элемент, то это приведёт к тому, что мы должны будем в каком-либо дереве отрезков по второй или более координате добавить новый элемент в середину, что эффективно сделать невозможно. Что касается запроса веса, он будет полностью аналогичен запросу в обычном -мерном дереве отрезков за .
