Теоретический минимум по математическому анализу за 2 семестр
Содержание
- 1 Вопрос №1. Суммирование расходящихся рядов методом средних арифметических
- 2 Вопрос №2. Суммирование расходящихся рядов методом Абеля
- 3 Вопрос №3. Теорема Фробениуса
- 4 Вопрос №4. Тауберова теорема Харди
- 5 Вопрос №5. Равномерная сходимость функционального ряда. Критерий Коши
- 6 Вопрос №6. Признак Вейерштрасса
- 7 Вопрос №7. Признак типа Абеля-Дирихле
- 8 Вопрос №8. Предельный переход под знаком функционального ряда
- 9 Вопрос №9. Условия почленного интегрирования функционального ряда
- 10 Вопрос №10. Условия почленного дифференцирования функционального ряда
- 11 Вопрос №11. Лемма Абеля
- 12 Вопрос №12. Теорема о радиусе сходимости
- 13 Вопрос №13. Вычисление радиуса сходимости
- 14 Вопрос №14. Дифференцирование и интегрирование степенных рядов
- 15 Вопрос №15. Степенной ряд, как ряд Тейлора своей суммы
- 16 Вопрос №16. Достаточное условие разложимости функции в ряд Тейлора
- 17 Вопрос №17. Разложение в степенной ряд показательной и логарифмической функций
- 18 Вопрос №18. Разложение в степенной ряд тригонометрических функций
- 19 Вопрос №19. Биномиальный ряд Ньютона
- 20 Вопрос №20. Формула Стирлинга
- 21 Вопрос №21. Нормированное пространство: арифметика предела
- 22 Вопрос №22. Ряды в банаховых пространствах
- 23 Вопрос №23. Унитарные пространства, неравенство Шварца
- 24 Вопрос №24. Гильбертовы пространства, экстремальное свойство ортонормированных систем
- 25 Вопрос №25. Ортогональные ряды в гильбертовых пространствах.
- 26 Вопрос №26. Принцип сжатия Банаха
- 27 Вопрос №27. Линейные операторы в НП: непрерывность и ограниченность
- 28 Вопрос №28. Норма линейного оператора
- 29 Вопрос №29. Линейные функционалы в унитарном пространстве, разделение точек
- 30 Вопрос №30. Пространство R^n : покоординатная сходимость
- 31 Вопрос №31. Полнота R^n
- 32 Вопрос №32. Критерий компактности в R^n
- 33 Ворпос №33. Непрерывные отображения в R^n: координатные функции, непрерывность линейных операторов
- 34 Вопрос №34. Дифференциал отображения и частные производные, дифференцируемость суперпозиции
- 35 Вопрос №35. Формула конечных приращений для функции многих переменных
- 36 Вопрос №36. Неравенство Лагранжа
- 37 Вопрос №37. Достаточное условие дифференцируемости функции многих переменных
- 38 Вопрос №38. Дифференциалы высших порядков, теорема о смешанных производных
- 39 Вопрос №39. Формула Тейлора для функции многих переменных
- 40 Вопрос №40. Безусловный экстремум: необходимое и достаточное условия
- 41 Вопрос №41. Локальная теорема о неявном отображении
- 42 Вопрос №42. Исследование функции многих переменных на условный экстремум
- 43 Вопрос №43. Определенный интеграл, зависящий от параметра: непрерывность, интегрирование и дифференцирование
- 44 Вопрос №44. Равномерная сходимость несобственного интеграла, зависящего от параметра, признак Вейерштрасса
- 45 Вопрос №45. Несобственный интеграл, зависящий от параметра: непрерывность
- 46 Вопрос №46. Несобственный интеграл, зависящий от параметра: интегрирование
- 47 Вопрос №47. Несобственный интеграл, зависящий от параметра: дифференцирование
- 48 Вопрос №48. Понятие о Гамма и Бета функциях Эйлера
- 49 Вопрос №49. Интеграл Римана по прямоугольнику: критерий существования
- 50 Вопрос №50. Аддитивность интеграла по прямоугольнику
- 51 Вопрос №51. Формула повторного интегрирования для прямоугольника
- 52 Вопрос №52. Критерий квадрируемости фигуры по Жордану
- 53 Вопрос №53. Условие существования интеграла по квадрируемому компакту
- 54 Вопрос №54. Формула повторного интегрирования в общем случае
- 55 Вопрос №55. Вычисление площади фигуры в криволинейных координатах
- 56 Вопрос №56. Замена переменных интегрирования в двойном интеграле
- 57 Вопрос №57. Обзор формул для многократных интегралов
Вопрос №1. Суммирование расходящихся рядов методом средних арифметических
Определение: |
Ряд | имеет сумму по методу средних арифметических (обозначают аббревиатурой с.а.), если .
Вопрос №2. Суммирование расходящихся рядов методом Абеля
Определение: |
Пусть дан ряд | и (в классическом смысле). Тогда этот ряд имеет сумму по методу Абеля, если .
Вопрос №3. Теорема Фробениуса
Теорема (Фробениус): |
(с.а) (А). |
Вопрос №4. Тауберова теорема Харди
Теорема (Харди): |
(с.а.)
Тогда, если существует такое , что , то . |
Вопрос №5. Равномерная сходимость функционального ряда. Критерий Коши
Определение: |
Пишут, что . | равномерно сходится к , если
Определение: |
Пусть на , если | задан функциональный ряд . Тогда он равномерно сходится к
Теорема (Критерий Коши равномерной сходимости): |
Ряд равномерно сходится на |
Вопрос №6. Признак Вейерштрасса
Теорема (Вейерштрасс): |
, , , — сходится.
Тогда равномерно сходится на . |
Вопрос №7. Признак типа Абеля-Дирихле
Теорема: |
*
|
Вопрос №8. Предельный переход под знаком функционального ряда
Теорема: |
Пусть на множестве заданы функции , — предельная точка этого множества и
. Тогда если - равномерно сходится на , то выполняется равенство : |
Вопрос №9. Условия почленного интегрирования функционального ряда
Теорема: |
Пусть интегрируема и равномерно сходится к на . Тогда тоже интегрируема, и
. |
Утверждение: |
Пусть функциональный ряд состоит из и равномерно сходится на этом отрезке.
Тогда сумма ряда будет интегрируемой функцией, и будет выполняться: |
Вопрос №10. Условия почленного дифференцирования функционального ряда
Теорема: |
Пусть на задан функциональный ряд , - сходится.
Пусть также - непрерывна на и - равномерно сходится на , тогда на выполняется : . |
Вопрос №11. Лемма Абеля
Лемма (Абель): |
Пусть для некоторого — сходится.
Тогда ряд сходится. |
Вопрос №12. Теорема о радиусе сходимости
Определение: |
— сходится . Заметим, что возможны случаи и . |
Теорема: |
Пусть есть ряд и — его радиус сходимости. Тогда
1) ряд абсолютно сходится.2) ряд сходится абсолютно и равномерно.3) 4) ряд расходится. — неопределённость. |
Вопрос №13. Вычисление радиуса сходимости
Теорема: |
Пусть есть , — его радиус сходимости. Тогда:
1) Если , то .2) Если Замечание: на самом деле, есть формула Коши-Адамара, применимая в любом случае: , то . |
Вопрос №14. Дифференцирование и интегрирование степенных рядов
Вопрос: "Каковы будут радиусы сходимости почленно проинтегрированных или продифференцированных рядов?"
Ответ: "Почленное интегрирование или дифференцирование не меняет радиуса сходимости ряда".
Утверждение: |
Промежуток сходимости степенного ряда совпадает с промежутком сходимости продифференцированного степенного ряда |
Вопрос №15. Степенной ряд, как ряд Тейлора своей суммы
111
Вопрос №16. Достаточное условие разложимости функции в ряд Тейлора
1111
Вопрос №17. Разложение в степенной ряд показательной и логарифмической функций
<wikitex> $e^x \stackrel{def}{=} \sum\limits_{k = 0}^{\infty} \frac{x^k}{k!} $
$ \ln(1 + x) = \sum\limits_{k = 1}^n (-1)^{k - 1} \frac{x^k}k + r_n(x) $, причем $ r_n(x) = \frac{\ln^{n + 1} (1 + \theta_n x)}{(n + 1)!} x^{n + 1}, \theta_n \in (0; 1) $ </wikitex>
Вопрос №18. Разложение в степенной ряд тригонометрических функций
<wikitex> $\sin(x) = \sum\limits_{n = 0}^{\infty} {(-1)}^n \frac{x^{2n + 1}}{(2n + 1)!}$
$\cos(x) = \sum\limits_{n = 0}^{\infty} {(-1)}^n \frac{x^{2n}}{(2n)!}$ </wikitex>
Вопрос №19. Биномиальный ряд Ньютона
<wikitex> $ (1 + x)^{\alpha} = \sum\limits_{k = 1}^{\infty} \left[ \frac{\alpha (\alpha - 1) \dots (\alpha - k + 1)}{k!} x^k \right] + 1, \alpha \in \mathbb{R} $ </wikitex>
Вопрос №20. Формула Стирлинга
<wikitex> $ n! = \sqrt{2 \pi n} {\left ( \frac ne \right )}^n e^{\frac{\theta_n}{12n}} $ </wikitex>
Вопрос №21. Нормированное пространство: арифметика предела
Утверждение: |
Пусть , — последовательности точек нормированного пространства , а — вещественная последовательность. Известно, что , , .
Тогда: |
Вопрос №22. Ряды в банаховых пространствах
Определение: |
Нормированное пространство | называется B-пространством, если для любой последовательности элементов , для которых из при вытекает существование предела последовательности.
Вопрос №23. Унитарные пространства, неравенство Шварца
Определение: |
Линейное множество со скалярным произведением называется унитарным пространством. |
Утверждение: |
Вопрос №24. Гильбертовы пространства, экстремальное свойство ортонормированных систем
Вопрос №25. Ортогональные ряды в гильбертовых пространствах.
Определение: |
Ряд | является ортогональным, если .
В частности, так как - ОНС в (гильбертово), то — ортогональный ряд.
Теорема: |
- сходящийся ортогональный ряд .
При этом, если x - сумма ряда, то выполняется теорема Пифагора: |
Вопрос №26. Принцип сжатия Банаха
Определение: |
Пусть — сжатие на шаре , если . | — B-пространство. Пусть — замкнутый шар в .
Теорема (Банах): |
У любого сжимающего отображения существует ровно одна неподвижная точка . |
Вопрос №27. Линейные операторы в НП: непрерывность и ограниченность
Определение: |
Пусть | , — нормированные пространства, . называется линейным оператором, если
Определение: |
Л.о. называется ограниченным, если |
Определение: |
Л.о. непрерывен в X, если |
Теорема: |
Линейный оператор непрерывен тогда и только тогда, когда он ограничен. |
Вопрос №28. Норма линейного оператора
Определение: |
Нормой ограниченного оператора | является .
Вопрос №29. Линейные функционалы в унитарном пространстве, разделение точек
Определение: |
Линейный функционал - линейный оператор вида TODO: точно так? | , где - гильбертово пространство.
TODO: Что такое разделение точек???
Вопрос №30. Пространство R^n : покоординатная сходимость
Утверждение (покоординатная сходимость в | ):
Пусть дана последовательность . Тогда в тогда и только тогда, когда для любого последовательность |
Вопрос №31. Полнота R^n
Теорема: |
Пространство с евклидовой нормой является B-пространством. |
Доказательство: |
Надо установить, что из сходимости в себе следует существование предела по норме .Если Но по доказанному ранее утверждению из покоординатной сходимости следует сходимость по норме, что и требовалось доказать. , то для любого выполняется . По критерию Коши для числовых последовательностей из этого следует, что каждая из последовательностей имеет предел, то есть, последовательность точек сходится покоординатно. |
Вопрос №32. Критерий компактности в R^n
Теорема (критерий компактности в | ):
Множество в компактно тогда и только тогда, когда оно замкнуто и ограничено. |
Ворпос №33. Непрерывные отображения в R^n: координатные функции, непрерывность линейных операторов
Вопрос №34. Дифференциал отображения и частные производные, дифференцируемость суперпозиции
Определение: |
Пусть Тогда , причем при — производная Фреше отображения в точке . | —шар в . — дифференцируема в точке , если существует зависящий от ограниченный линейный оператор , такой, что если , то:
Теорема: |
Композиция дифференцируемых отображений дифференцируема. Производная Фреше равна композиции производных Фреше отображений.
Пусть , тогда |
Определение: |
Данный предел называется частной производной первого порядка функции | по переменной .
Вопрос №35. Формула конечных приращений для функции многих переменных
Вопрос №36. Неравенство Лагранжа
Теорема (Неравенство Лагранжа): |
Пусть — шар в —дифференцируема в каждой точке шара, тогда:, где |
Вопрос №37. Достаточное условие дифференцируемости функции многих переменных
Теорема: |
Пусть ,
Тогда существует дифференциал этой функции в точке , каждая из которых, как функция переменных, непрерывна в . . |
Вопрос №38. Дифференциалы высших порядков, теорема о смешанных производных
Определим частные производные и дифференциалы высших порядков.
— оператор, дифференцирующий функцию по . Последовательное применение такого рода оператора даёт нам частные производные высших порядков. Пусть . Тогда — частная производная второго порядка функции . Дифференцирование осуществляется по переменной в знаменателе, слева направо.
Теорема (О смешанных производных): |
Пусть в двумерном шаре у функции существуют смешанные производные второго порядка и каждая из них непрерывна в некоторой точке этого шара. Тогда в : |
Вопрос №39. Формула Тейлора для функции многих переменных
Вопрос №40. Безусловный экстремум: необходимое и достаточное условия
{Определение |definition= Пусть задан линейный функционал
на . Если при , , то — точка локального максимума. Аналогично определяется точка локального минимума. }}Теорема (Аналог теоремы Ферма): |
Пусть дифференцируема в точке локального экстремума . Тогда |
Вопрос №41. Локальная теорема о неявном отображении
Теорема (О неявном отображении): |
Пусть для поставлена задача о неявном отображении, с начальными данными . Известно, что в окрестности начальных данных непрерывно зависит от и непрерывно обратима в . Тогда в некоторой окрестности начальных данных неявное отображение существует. |
Вопрос №42. Исследование функции многих переменных на условный экстремум
. Пусть заданы «уравнения связи» в количестве m:
— условный максимум функции , если для всех и , удовлетворяющих уравнениям связи, выполняется неравенство . Если же — условный минимум.
Вопрос №43. Определенный интеграл, зависящий от параметра: непрерывность, интегрирование и дифференцирование
<wikitex> Рассматриваем $ z = f(x, y) $, заданную на прямоугольнике $ a \le x \le b; \quad c \le y \le d $.
До конца параграфа $ f $ непрерывна как функция двух переменных.
$ F(y) = \int\limits_a^b f(x, y) dx $ - интеграл, зависящий от параметра.
- $ F(y) $ - непрерывна на $ [c; d] $.
- Если существует непрерывная $ \frac{\partial f}{\partial y} $, то cуществует $ F'(y) = \int\limits_a^b \frac{\partial f}{\partial y} (x, y) dx $ - формула Лейбница.
- $ \int\limits_c^d F(y) dy = \int\limits_a^b dx \int\limits_c^d f(x, y) dy $ - формула читается справа налево, является повторным интегралом и по сути означает смену местами интегралов по двум переменным.
</wikitex>
Вопрос №44. Равномерная сходимость несобственного интеграла, зависящего от параметра, признак Вейерштрасса
<wikitex>
Теорема (Вейерштрасс, Признак равномерной сходимости несобственных интегралов): |
Пусть $ |
</wikitex>
Вопрос №45. Несобственный интеграл, зависящий от параметра: непрерывность
<wikitex> $ F(y) = \int\limits_a^{\infty} f(x, y) dx \stackrel{?}{\Rightarrow} \Delta F(y) \xrightarrow[\Delta y \to 0]{} 0 $ </wikitex>
Вопрос №46. Несобственный интеграл, зависящий от параметра: интегрирование
<wikitex> $ \int\limits_c^d dy \int\limits_a^{\infty} f(x, y) dx = \int\limits_a^{\infty} dx \int\limits_c^d f(x,y) dy $ </wikitex>
Вопрос №47. Несобственный интеграл, зависящий от параметра: дифференцирование
<wikitex> $ \int\limits_a^{\infty} \frac{\partial f}{\partial y} (x, y) dx = \left( \int\limits_c^{y} g(t) dt \right)' = \left( \int\limits_a^{\infty} f(x, y) dx \right)' $ </wikitex>
Вопрос №48. Понятие о Гамма и Бета функциях Эйлера
<wikitex> $ B (a, b) = \int\limits_0^1 x^{a - 1} (1 - x)^{b - 1} dx $
$ \Gamma (a) = \int\limits_0^{\infty} x^{a - 1} e^{-x} dx $
В обоих случаях: интегралы, зависящие от параметра.
Легко понять, что $ B (a, b) $ Сходится при $ a, b > 0 $; $ \Gamma(a) $ сходится при $ a > 0 $. </wikitex>
Вопрос №49. Интеграл Римана по прямоугольнику: критерий существования
Определение: |
Двойной интеграл |
,
если
— непрерывна на , то существует (достаточное условие интегрируемости).Вопрос №50. Аддитивность интеграла по прямоугольнику
Вопрос №51. Формула повторного интегрирования для прямоугольника
А ВАС ЭТО НЕ СПРОСЯТ
Вопрос №52. Критерий квадрируемости фигуры по Жордану
Определение: |
квадрируема по Жордану, если существует . Значение этого интеграла называется 'площадью фигуры'. |
Вопрос №53. Условие существования интеграла по квадрируемому компакту
Теорема: |
Пусть — квадрируемый компакт на плоскости, непрерывна на . Тогда существует . |
Вопрос №54. Формула повторного интегрирования в общем случае
А ВАС ЭТО НЕ СПРОСЯТ
Вопрос №55. Вычисление площади фигуры в криволинейных координатах
Вопрос №56. Замена переменных интегрирования в двойном интеграле