Изменения

Перейти к: навигация, поиск

Динамическое программирование

713 байт добавлено, 04:27, 27 ноября 2011
Нет описания правки
<wikitex>
==ОпределениеОптимальность для подзадач==
Важнейшее свойство задач, которое позволяет решать их с помощью динамического программирования это оптимальность для подзадач. В зависимости от формулировки задачи, будь то динамическое программирование на отрезке, на префиксе, на дереве, термин оптимальности для подзадач может быть различным, но, в целом, он формулируется так:
{{Определение
|definition = «Если есть оптимальное решение для некоторой подзадачи, которая возникает в процессе решения задачи, то именно его нужно использовать для решения задачи в целом»}}
 
==Оптимальная подструктура==
Задачи, решаемые динамическим программированием, можно определить как поиск в заданном ориентированном ациклическом графе [[Кратчайший_путь_в_ациклическом_графе|кратчайшего пути]] от одной вершины к другой
Задача по нахождению кратчайшего пути до некоторой вершины графа (например, $S$<sub>$i,j$</sub>) содержит в себе оптимальное решение подзадач (кратчайший путь до $S$<sub>$1,j-1$</sub> или $S$<sub>$2,j-2$</sub>). Это свойство называется оптимальной подструктурой. Наличие у задачи этого свойства определяет её решаемость динамическим программированием.
 
==Принцип оптимальности для динамического программирования на префиксе==
[[Файл:ST.jpg|320px]]
Рассмотрим принцип оптимальности для динамического программирования на префиксе на примере классической задачи динамического программирования, т.е. поиска в заданном ориентированном ациклическом графе [[Кратчайший_путь_в_ациклическом_графе|кратчайшего пути]] от одной вершины к другой.
Задан граф. Требуется дойти от $S$ до $T$. Префикс оптимального пути $S \rightsquigarrow U$ является оптимальным путём $S \rightsquigarrow U$. Есть какой-то префикс, оптимальный путь проходит через $U$. Рассмотрим префикс $\Delta U$ (т.е. путь $S \rightsquigarrow U$ ), пусть он неоптимальный. Это значит, что есть более оптимальный путь. Тогда заменим этот префикс на более оптимальный путь до $U$, а путь $U \rightsquigarrow T$ добавим в конец. Получится более оптимальный путь $S \rightsquigarrow T$. Принцип оптимальности для подзадач выполняется.
*Лекция 10.11.2011
*[http://ru.wikipedia.org/wiki/%D0%96%D0%B0%D0%B4%D0%BD%D1%8B%D0%B9_%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC#.D0.9E.D0.BF.D1.82.D0.B8.D0.BC.D0.B0.D0.BB.D1.8C.D0.BD.D0.BE.D1.81.D1.82.D1.8C_.D0.B4.D0.BB.D1.8F_.D0.BF.D0.BE.D0.B4.D0.B7.D0.B0.D0.B4.D0.B0.D1.87|Википедия, Жадный алгоритм]
*Т. Кормен. «Алгоритмы. Построение и анализ» (2<sup>ое</sup>издание, Глава 15.3)
[[Категория:Дискретная математика и алгоритмы]]
[[Категория:Динамическое программирование]]
285
правок

Навигация