1632
правки
Изменения
м
Что бы Чтобы реализовать вычитание [[Каскадный сумматор|каскадным]] или [[Двоичный каскадный сумматор|двоичным каскадным сумматором]], нужно сложить на нём уменьшаемое с противоположным по знаку вычитаемым, так же как и при вычитании обычных чисел. Тогда полученная сумма будет разностью данных чисел: <tex> x - y = x + (-y)</tex>.
<math> x - y = x +(-y)</math>Инверсия знака записанного в двоичном виде числа происходит точно так же, как и в [[Представление целых чисел: прямой код, код со сдвигом, дополнительный код#Дополнительный код|дополнительном коде]].
Инверсия знака записанного в двоичном виде числа происходит точно так же, как и в [[Представление целых чисел: прямой код, код со сдвигом, дополнительный код#Дополнительный код|дополнительном коде]].<br/>Данное число нужно инвертировать и прибавить к нему единицу. : <mathtex> -y = (\lnot y) + 1 </math> Например число <math> - 19</math> будет записано как <math> 01101 </math>, так как <math> 19_\mathrm{10} = 10011_\mathrm{2}</math>, а <math> (\lnot 10011) + 1 = 01100 + 1 = 01101 </mathtex>.
rollbackEdits.php mass rollback
==Преобразование чисел для вычитания сумматором==
Например, число <tex> \large - 19</tex> будет записано как <tex> \large 01101 </tex>, так как <tex> \large 19_\mathrm{10} = 10011_\mathrm{2}</tex>, а <tex> \large (\lnot 10011) + 1 = 01100 + 1 = 01101 </tex>
==Оптимизация==
Очевидно, что такой подход к вычитанию реализация преобразования в дополнительный код отдельным сумматором не оптимален, так как придётся вносить делает вычисление разности в схему последовательно 2 сумматора или блок памятидва раза медленнее, для запоминания промежуточных действий таких как, сложение с единицейчем вычисление суммы. Что бы упростить Чтобы ускорить вычисления нужно воспользоваться лишним первым битом переноса в сумматоре, : для реализации суммы в который него посылают ноль, и послать а для реализации вычитания посылать в него единицу при вычитании и ноль при суммировании. Вместо того что бы , чтобы инвертировать вычитаемое число, можно сделать делать XOR бита первого переноса с каждым битом вычитаемого числа. Таким образом, можно посылать в полученный арифмометр числа точно полученная схема будет работать как для суммирования, так же как и для вычитания, и при сложенииэтом вычитание не требует больше времени, только первый бит переноса будет отвечать за знак операции: 0-чем сложение 1-вычитание.
==Пример Схема реализации вычитания сумматором==
{|
|-
!Условные обозначения
!Изображение арифмометрасхемы
|-
|
{| border="1"
![[Файл:XOR_logic_element.png|100px|XOR]]
| логический [[Реализация булевой функции схемой из функциональных элементов|функциональный элемент]] '''XOR'''<br /> '''A''' и '''B''' входы и '''Y''' выход.!<mathtex> \large A \oplus B = Y</mathtex> <br /><mathtex> \large 0 \oplus 0 = 0</math><br /tex> <mathtex> \large 0 \oplus 1 = 1</mathtex> <br /><mathtex> \large 1 \oplus 0 = 1</mathtex> <br /><mathtex> \large 1 \oplus 1 = 0</mathtex>
|-
!<mathtex> \mathbf {\color{Goldenrod}\mbox{A}_\mathrm{0} , \mbox{A}_\mathrm{1} ... , \dots, \mbox{A}_\mathrm{N}} </mathtex>|'''0'''-ой '''1'''-ый ... '''n'''-ный биты первого слагаемого или (уменьшаемого.)!<mathtex> \mathbf large A </mathtex>
|-
!<mathtex> \mathbf {\color{Red}\mbox{B}_\mathrm{0} , \mbox{B}_\mathrm{1} ... , \dots, \mbox{B}_\mathrm{N}} </mathtex>|'''0'''-ой '''1'''-ый ... '''n'''-ный биты второго слагаемого или (вычитаемого.)!<mathtex> \mathbf large B</mathtex>
|-
!<mathtex> \mathbf {\color{Green}\mbox{S}_\mathrm{0} , \mbox{S}_\mathrm{1} ... , \dots, \mbox{S}_\mathrm{N}} </mathtex>|'''0'''-ой '''1'''-ый ... '''n'''-ный биты ответа.!<mathtex> \large S = A \pm B</mathtex>
|-
!<mathtex> \mathbf {\color{Blue}T} </mathtex>|бит , отвечающий за знак операции<br />'''T''' подключён к '''C<small>0</small>''' 0-вому биту переноса в сумматоре!|<center>'''0 ''' если <mathtex> \large S = A + B</mathtex><br />'''1 ''' если <mathtex> \large S = A - B</mathtex><br /center>
|-
!<mathtex> \mathbf {\color{OliveGreen}0 , 1 ... , \dots, N} </mathtex>|[[Сумматор|блоки]] [[Каскадный сумматор|каскадного]] или [[Двоичный каскадный сумматор|двоичного каскадного]] сумматора полные сумматоры
|[[Файл:Full_Adder.png|250px|Блок сумматор]]
|}
==См. также==
*[[Двоичный_каскадный_сумматор|Сумматор]]<br />*[[Матричный_умножитель|Матричный умножитель]]<br />*[[Реализация_булевой_функции_схемой_из_функциональных_элементов|Реализация булевой функции схемой из функциональных элементов]]
==СсылкиИсточники информации==*[http://en.wikipedia.org/wiki/Subtractor Subtractor]<br />*[http://www.play-hookey.com/digital/binary_subtraction.html Negative Numbers and Binary Subtraction]<br />*[http://tams-www.informatik.uni-hamburg.de/applets/hades/webdemos/20-arithmetic/40-addsub/add-sub.html Рабочий пример арифмометра]
[[Категория:Дискретная математика и алгоритмы]]
[[Категория:Схемы из функциональных элементов]]