1632
правки
Изменения
м
{{Определение
|definition=
'''Алгоритм масштабирования потока''' — алгоритм поиска максимального [[Определение_сети,_потока#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D0.BF.D0.BE.D1.82.D0.BE.D0.BA.D0.B0|потока]], работающий в предположении, что все [[Определение_сети,_потока#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D1.81.D0.B5.D1.82.D0.B8|пропускные способности]] рёбер целые, так как они легко представимы в двоичном виде.
}}
Если записать пропускную способность любого ребра Идея алгоритма заключается в двоичном виденахождении путей с высокой пропускной способностью в первую очередь, чтобы сразу сильно увеличивать [[Определение_сети,_потока#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D0.BF.D0.BE.D1.82.D0.BE.D0.BA.D0.B0|поток]] по ним, то длина полученной битовой последовательности не будет превышать а затем по всем остальным. Для этого воспользуемся масштабом <tex> \lfloor \log_2 U \rfloor + 1 = n + 1 Delta </tex> бит, а значение пропускной способности определяется формулой:. Изначально положим <tex> c(u, v) = \sum\limits_{i Delta = 0}^n a_i(u, v) \times 2^n, a_i(u, v) {\in lfloor \{0, 1log_2 U \rfloor} </tex>.
Идея алгоритма заключается На каждой итерации в нахождении путей [[Дополняющая_сеть,_дополняющий_путь|дополняющей сети]] алгоритм находит [[Дополняющая_сеть,_дополняющий_путь|дополняющие пути]] с высокой пропускной способностью не меньшей <tex> \Delta </tex> и увеличивает поток вдоль них.Уменьшив масштаб <tex> \Delta </tex> в первую очередь, чтобы сразу сильно увеличивать поток по ним<tex> 2 </tex> раза, а затем по всем остальнымпереходит к следующей итерации.
Методом [[Алгоритм_Форда-ФалкерсонаОчевидно,_реализация_с_помощью_поиска_в_глубину|Форда-Фалкерсона]] находим поток <tex> f_0 </tex> для графа <tex> G_0 </tex> с урезанными пропускными способностями что при <tex> c_0(u, v) \Delta = a_n(u, v) 1 </tex>.Добавим следующий бит и находим следующее приближение для графа <tex> G_1 </tex> с новыми пропускными способностями <tex> c_1(u, v) = 2 a_n(u, v) + a_{n алгоритм вырождается в алгоритм [[Алоритм_Эдмондса- 1}(u, v) Карпа|Эдмондса- 2 f_0(uКарпа]], v) </tex>вследствие чего является корректным.
После <tex> n + 1 </tex> итерации получим ответ к задачеКоличество необходимых увеличений путей, основанных на кратчайших путях, может быть много больше количества увеличений, основанных на путях с высокой пропускной способностью.{|border="0" cellpadding="5" width=30% align=center|[[Файл:Flow_scale_1.png|550px|thumb|center|Выбор дополняющих путей в порядке длины]]|[[Файл:Flow_scale_2.png|550px|thumb|center|Выбор пути с высокой пропускной способностью в первую очередь]]|}
Время работы алгоритма — Максимальный поток в сети <tex> O(G </tex> ограничен сверху значением <tex> |f_k| + 2^k E</tex>, где <tex> |f_k| </tex> {{---}} значение потока при масштабе <tex> \Delta = 2^2 \log U) k </tex>.
Докажем[[Файл:Flow_scale_3.png|530px|thumb|right|Разрез <tex> C_k </tex>]] В конце итерации с масштабом <tex> \Delta = 2^k </tex>, сеть <tex> G_{f_k} </tex> может быть разбита на два непересекающихся множества <tex> A_k </tex> и <tex> \overline{A_k} </tex> так, что время работы каждой итерации — остаточная пропускная способность каждого ребра, идущего из <tex> A_k </tex> в <tex> \overline{A_k} </tex>, не превосходит масштаба <tex> \Delta </tex>. То есть образуется [[Разрез,_лемма_о_потоке_через_разрез|разрез]] <tex> C_k = \langle A_k, \overline{A_k} \rangle </tex>. При этом, количество таких рёбер не превосходит <tex> E </tex>.Значит, значение остаточного потока не может превосходить <tex> O(\Delta E= 2^2) k E </tex>.}}
Время работы первой итерации алгоритма — Суммарное количество увеличивающих путей {{---}} <tex> O(E^2\log U) </tex>.
[[Файл:Scaling.jpg|250px|thumb|right|Разрез В ходе выполнения алгоритма масштаб <tex> \langle A, \overline{A} \rangle Delta </tex>.]]Пусть вершина принимает следующие значения: <tex> s </tex> — источник графа, вершина <tex> t </tex> — сток.Граф <tex> G_S = \{2^{f_0\lfloor \log_2 U \rfloor} </tex> — [[Отношение_связности,_компоненты_связности#.D0.A1.D0.BB.D1.83.D1.87.D0.B0.D0.B9_.D0.BE.D1.80.D0.B8.D0.B5.D0.BD.D1.82.D0.B8.D1.80.D0.BE.D0.B2.D0.B0.D0.BD.D0.BD.D0.BE.D0.B3.D0.BE_.D0.B3.D1.80.D0.B0.D1.84.D0.B0|несвязен]]. Обозначим за <tex> A </tex> компоненту связности графа\ldots, 2^k, \ldots, 2, 1, содержащую вершину <tex> s 0\} </tex>. Тогда <tex> t |S| = O(\notin A log U) </tex>. Тогда <tex> c_{0_{f_0---}}(A, \overline{A}) = 0 </tex>количество итераций алгоритма.
Значит, в графе с пропускными способностями Количество итераций алгоритма {{---}} <tex> c_1 O(\log U) </tex>:, значит, суммарное количество увеличивающих путей {{---}} <tex> O(E \forall u \in A, v \in \overline{A} \colon c_1(u, vlog U) \leq 1 </tex>.
Рассмотрим максимальный поток Алгоритм [[Обход_в_ширину|обхода в ширину]] находит каждый дополняющий путь за время <tex> f'_1 O(E) </tex> в графе . Следовательно, суммарное время работы алгоритма {{---}} <tex> G_1 O(E^2 \log U) </tex>.}} == Псевдокод == '''function''' maxFlowByScaling(G: '''graph''', s: '''int''', t: '''int'''): '''int''' '''int''' flow = 0 <font color=darkgreen> // поток в сети </font> '''int''' scale = <tex> 2^{\langle A, lfloor\log_2U\overline{Arfloor} \rangle </tex> — [[Разрез <font color=darkgreen> // текущий минимальный размер потока,_лемма_о_потоке_через_разрез|разрез]], значит:который пытаемся пустить </font> '''while''' scale <tex> |f\geqslant </tex> 1 '''while''_1| = f'_1(Aв <tex> G_f </tex> существует увеличивающий путь <tex> p </tex> с пропускной способностью не меньше, чем scale '''int''' minCapacity = <tex>\min\overline{A}c(u, v) \leq ccolon(Au, v) \in p\overline{A}) \leq E, f_1 = f_0 + f'_1 </tex>.Пропускная <font color=darkgreen> // минимальная пропускная способность каждого дополняющего в увеличивающем пути не меньше <tex> 1 </texfont>, а поиск каждого занимает увеличить поток по рёбрам <tex> O(E) p </tex> времени. Значит, итоговое время работы — на minCapacity обновить <tex> O(E^2) G_f </tex>.}} flow = flow + minCapacity scale = scale / 2 '''return''' flow
Оценка времени работы остальных итераций доказывается аналогично второму случаю== См. Количество итераций — <tex> O(\log U) </tex>. Значиттакже ==* [[Определение_сети,_потока|Определение сети, общее время работы алгоритма — <tex> O(E^2 \log U) </tex>. потока]]* [[Алоритм_Эдмондса-Карпа|Алоритм Эдмондса-Карпа]]}}* [[Алгоритм_Форда-Фалкерсона,_реализация_с_помощью_поиска_в_глубину|Алгоритм Форда-Фалкерсона]]
rollbackEdits.php mass rollback
== Алгоритм ==
Пусть дан дана [[Основные_определения_теории_графовОпределение_сети,_потока#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D1.81.D0.B5.D1.82.D0.B8|графсеть]] <tex> G </tex>, все ребра которого рёбра которой имеют целочисленную [[Определение_сети,_потока#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D1.81.D0.B5.D1.82.D0.B8|пропускную способность]]. Обозначим за <tex> U </tex> максимальную пропускную способность: <tex> U = \max\limits_{(u, v) \in EGE} c(u, v) </tex>.
== Оценка времени работы ==
{{УтверждениеЛемма|about=1
|statement=
|proof=
{{Лемма
|about=
2
|statement=
|proof=
На первом шаге ребра имеют некоторой итерации алгоритма каждый дополняющий путь имеет пропускную способность не меньше <tex> 1 2^k </tex>. Значит, Дополняющий поток на предыдущем шаге ограничен значением <tex> |f_0| \leq V 2^{k + 1} E </tex>. Поиск каждого дополнительного пути требует <tex> O(E) </tex> времениСледовательно, а их на каждой итерации количество дополняющих путей не больше превосходит <tex> V 2E </tex>. Итоговое время работы первой итерации — <tex> O(VE) \leq O(E^2) </tex>.}} {{ЛеммаУтверждение
|statement=
Время работы второй итерации алгоритма — {{---}} <tex> O(E^2\log U) </tex>.
|proof=
== Литература Источники информации ==
* [http://www.csd.uwo.ca/~yuri/Papers/iccv07_cap_scaling.pdf ''Olivier Juan, Yuri Boikov'': Capacity Scaling for Graph Cuts in Vision]
* [http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=maxFlowRevisited Algorithm Tutorials. Maximum Flow: Augmenting Path Algorithms Comparison]
* [http://wwwlogic.cs-seminarpdmi.spbras.ru/reportsics/34talks/21stream.pdf ''Андрей Станкевич'': Задача о максимальном потоке]* [https://youtu.be/sEwp5ZAJJps?t=18m9s ''Андрей Станкевич'': Лекториум, дополнительные главы алгоритмов, лекция 12]
[[Категория: Алгоритмы и структуры данных]]
[[Категория: Задача о максимальном потоке]]