Изменения
→Теорема Егорова
<tex>\mu E' < \delta</tex>, <tex>\bar E' = E \setminus E'</tex>, значит,
<tex>\mu \bar E' = \mu E - \mu E' = > \mu E - \delta</tex>.
Пусть <tex> E'' = \bar E' </tex>.
По двойственности, <tex>\bar E' = \overline{\bigcup\limits_{p=1}^\infty B_m(p)} = \bigcap\limits_{p=1}^\infty \overline{B_{m_p}(p)}</tex>.
<tex>B_{m_p}(p) = \bigcup\limits_{n=m_p}^\infty E(|f_n - f| \geq \frac1p)</tex>. Значит, <tex>\bar B_{m_p}(p) = \bigcap\limits_{n=m_p}^\infty E(|f_n - f| < \frac1p)</tex>;
Окончательно получается, что <tex>\bar E' = \bigcap\limits_{p=1}^\infty \bigcap\limits_{n=m_p}^\infty E(|f_n - f| < \frac1p)</tex>.