Изменения

Перейти к: навигация, поиск

Неравенство Макмиллана

Нет изменений в размере, 23:57, 11 января 2012
Неравенство Макмиллана
<tex>=(a+ba+bb)\times{(a+ba+bb)}=aa+aba+abb+baa+baba+babb+bba+bbba+bbbb.</tex> Не случайно в этом примере все одночлены в правой части различны (если не переставлять переменные): так будет для любого однозначно декодируемого кода, ведь по определению однозначности никакое слово не может быть получено двумя способами при соединении кодовых слов.
Далее подставим <tex>a=b=\frac{1}{2}</tex> в наше неравенство (если оно верно для букв, то оно верно и для любых их числовых значений). Слева получится <tex>(2^{-n_1}+2^{-n_2}+...+2^{-n_in_k})^N</tex> (выражение из неравенства Макмиллана). Оценим правую часть сверху, сгруппировав слова по длинам: имеется не более <tex>2^l</tex> слагаемых длины <tex>l</tex>, каждое из которых равно <tex>2^{-l}</tex>, и потому слагаемые данной длины в сумме не превосходят единицы, а правая часть не превосходит максимальной длины слагаемых, то есть <tex>N\times{\max(n_i)}</tex>. Получаем, что <tex>(2^{-n_1}+2^{-n_2}+...+2^{-n_i})^N<N\times{\max(n_i)}</tex> и это верно при любом <tex>N</tex>. Если основание степени в левой части больше единицы, то при больших <tex>N</tex> это неравенство нарушится (показательная функция растет быстрее линейной). Поэтому, для однозначного кода выполняется неравенство Макмиллана.
}}
Анонимный участник

Навигация