Изменения
Нет описания правки
* Согласно китайской теореме об остатках, если некоторые натуральные числа <tex>k_0, \dots k_n</tex> попарно взаимно просты, то для любых целых чисел <tex>u_0, \dots u_n</tex>, таких, что <tex>0 \le k_i < u_i</tex>, найдется такое целое число <tex>b</tex>, для которого выполнено <tex>k_i = b \% u_i</tex>. Возьмем <tex>b</tex>, подсказываемое теоремой об остатках.
}}
{{Теорема
|statement=Всякая рекурсивная функция представима в арифметике.
|proof=
Представимость первых четырех примитивов уже показана. Покажем представимость примитивной рекурсии и операции минимизации.
Значит, по лемме, должны существовать такие числа <tex>b</tex> и <tex>c</tex>, что <tex>\beta (b,c,i) = a_i</tex> для <tex>0 \le i \le x_{n+1}</tex>.
Приведенные рассуждения позволяют построить следующую формулу, представляющую <tex>R\langle{}f,g\rangle (x_1, ... x_{n+1})</tex>:
<tex>R(x_1, \dots x_{n+1}, a) := \exists b \exists c (\exists k (B (b,c,0,k) \& F (x_1,...x_n, k))</tex> <tex>\;\;\;\& B (b,c,x_{n+1},a)</tex> <tex>\;\;\;\& \forall k (k < x_{n+1} \rightarrow \exists d \exists e (B (b,c,k,d) \& B (b,c,k',e) \& G (x_1,..x_n,k,d,e)))</tex>
}}