Изменения

Перейти к: навигация, поиск

Алгоритм Дейкстры

56 байт убрано, 09:24, 17 января 2012
Обоснование корректности
Тогда после выполнения алгоритма Дейкстры <tex>d(u) = \rho(s, u)</tex> для всех <tex>u</tex>, где <tex>\rho(s, u)</tex> — длина кратчайшего пути из вершины <tex>s</tex> в вершину <tex>u</tex>
|proof=
Докажем по индукции, что в момент посещения любой вершины <tex>u</tex>, <tex>d(u) = \rho(s, u)</tex>, где <tex>s</tex> - стартовая вершина.
* На первом шаге выбирается <tex>s</tex>, для нее выполнено: <tex>d(s) = \rho(s, s) = 0</tex>
* Пусть для <tex>n</tex> первых шагов алгоритм сработал верно и на <tex>n + 1</tex> шагу выбрана вершина <tex>u</tex>. Докажем, что в этот момент <tex>d(u) = \rho(s, u)</tex>. Для начала отметим, что для любой вершины <tex>v</tex>, всегда выполняется <tex>d(v) \ge \rho(s, v)</tex> (алгоритм не может найти путь короче, чем кратчайший из всех существующих). Пусть <tex>P</tex> — кратчайший путь из <tex>s</tex> в <tex>u</tex>, <tex>v</tex> — первая непосещённая вершина на <tex>P</tex>, <tex>z</tex> — предшествующая ей (следовательно, посещённая). Поскольку путь <tex>P</tex> кратчайший, его часть, ведущая из <tex>s</tex> через <tex>z</tex> в <tex>v</tex>, тоже кратчайшая, следовательно <tex>\rho(s, v) = \rho(s, z) + w(zv)</tex>. По предположению индукции, в момент посещения вершины <tex>z</tex> выполнялось <tex>d(z) = \rho(s, z)</tex>, следовательно, вершина <tex>v</tex> тогда получила метку не больше чем <tex>d(z) + w(zv) = \rho(s, z) + w(zv) = \rho(s, v)</tex>, следовательно, <tex>d(v) = \rho(s, v)</tex>. С другой стороны, поскольку сейчас мы выбрали вершину <tex>u</tex>, её метка минимальна среди непосещённых, то есть <tex>d(u) \le d(v) = \rho(s, v) \le \rho(s, u)</tex>, где второе неравенсто верно из-за ранее упомянутого определения вершины <tex>v</tex> в качестве первой непосещённой вершины на <tex>P</tex>, то есть вес пути до промежуточной вершины не превосходит веса пути до конечной вершины вследствие неотрицательности весовой функции. Комбинируя это с <tex>d(u) \ge \rho(s, u)</tex>, имеем <tex>d(u) = \rho(s, u)</tex>, что и требовалось доказать.
*Поскольку алгоритм заканчивает работу, когда все вершины посещены, в этот момент <tex>d(u) = \rho(s, u)</tex> для всех <tex>u</tex>.
}}
 
== Оценка сложности ==
Основной цикл выполняется <tex>V</tex> раз. Релаксация выполниться всего <tex>E</tex> раз. В реализации алгоритма присутствует функция выбора вершины с минимальным значением <tex>d</tex>, асимптотика её работы зависит от реализации.
304
правки

Навигация