Изменения

Перейти к: навигация, поиск
Нет описания правки
==Алгоритм==
Основная идея алгоритма заключается в том, чтобы разбить состояния на [[Отношение эквивалентности#Классы эквивалентности|классы эквивалентности]] — они и будут состояниями минимизированного автомата. <br /> Для реализации алгоритма нам потребуются очередь <tex>Q</tex> и таблица размером <tex>n \times n</tex>, где <tex>n</tex> — количество состояний автомата. <br /> Будем помечать в таблице пары [[Эквивалентность состояний ДКА|неэквивалентных состояний]] и класть их в очередь. <br /> 
Изначально добавим в очередь <tex>Q</tex> пары состояний, различимых строкой <tex> \varepsilon </tex>, и пометим их в таблице.
Пока <tex>Q</tex> не станет пуста, будем делать следующее:
#Отметим в таблице и добавим в очередь <tex>Q</tex> все пары <tex> \langle t, k \rangle </tex> такие, что <tex> \mathcal {9} c \in \Sigma, \langle t, c \rangle \vdash \langle u, \varepsilon \rangle, \langle k, c \rangle \vdash \langle v, \varepsilon \rangle </tex>, и пара <tex> \langle t, k \rangle</tex> не отмечена в таблице.
В момент опустошения очереди пары состояний, не помеченные в таблице, являются парами эквивалентных состояний.
За один проход по таблице, согласно теореме, разбиваем пары эквивалентных состояний на классы эквивалентности. <br /> Стартовым состоянием полученного автомата будет состояние, соответствующее классу эквивалентности, содержащему стартовое состояние исходного автомата. <br /> 
Терминальными состояниями полученного автомата будут состояния, соответствующие классам эквивалентности, содержащим терминальные состояния исходного автомата.
===Корректность алгоритма===
Пусть в результате применения данного алгоритма к автомату <tex>A</tex> мы получили автомат <tex>A_{min}</tex>. Докажем, что этот автомат минимальный и единственный с точностью до изоморфизма. <br /> 
Пусть существует автомат <tex>A'</tex>, эквивалентный <tex>A</tex>, но с числом состояний меньшим, чем в <tex>A_{min}</tex>.
Стартовые состояния <tex>s \in A_{min}</tex> и <tex>s' \in A'</tex> эквивалентны, так как <tex>A_{min}</tex> и <tex>A'</tex> допускают один и тот же язык. Рассмотрим строку <tex>\alpha = a_1a_2...a_{k}</tex>, где <tex>a_{i} \in \Sigma</tex>, такую, что <tex> \langle s, \alpha \rangle \vdash^* \langle u, \varepsilon \rangle </tex>, <tex> \langle s', \alpha \rangle \vdash^* \langle u', \varepsilon \rangle </tex>. Пусть <tex>\langle s, a_1 \rangle \vdash^* \langle l, \varepsilon \rangle </tex> и <tex>\langle s', a_1 \rangle \vdash^* \langle l', \varepsilon \rangle </tex>. Так как <tex>s</tex> и <tex>s'</tex> эквивалентны, то <tex>l</tex> и <tex>l'</tex> эквивалентны. Аналогично для всех <tex>a_{i}</tex>. В итоге получим, что <tex>u</tex> эквивалентно <tex>u'</tex>. Значит, для каждого состояния из <tex>A_{min}</tex> существует эквивалентное состояние из <tex>A'</tex>.<br /> Состояний в <tex>A'</tex> меньше, чем в <tex>A_{min}</tex>, значит двум состояниям из <tex>A_{min}</tex> эквивалентно одно состояние из <tex>A'</tex>. Тогда эти два состояния эквивалентны, но автомат <tex>A_{min}</tex> построен так, что в нем нет эквивалентных состояний. Противоречие.<br /> 
Так как каждому состоянию из <tex>A_{min}</tex> эквивалентно состояние из <tex>A'</tex>, то автоматы <tex>A_{min}</tex> и <tex>A'</tex> изоморфны.
==Пример==
Минимизируем данный автомат. <br /> 
[[Файл:dka.jpg]]
<br /> Будем рассматривать только нижний треугольник таблицы пар различимых состояний. <br /> 
Отметили состояния, различающиеся строкой <tex>\varepsilon</tex>:
{| border = "1"
|}
Из таблицы видно, что классы эквивалентных состояний это <tex> \mathcal {f} A, B \mathcal {g}, \mathcal {f} C, D \mathcal {g}, \mathcal {f} F, G \mathcal {g}, \mathcal {f} E \mathcal {g}, \mathcal {f} H \mathcal {g} </tex>. <br /> Итого получили такой автомат: <br />  [[Файл:dkaMin.jpg]]
==Источники==
142
правки

Навигация