Изменения

Перейти к: навигация, поиск

Теоремы о временной и ёмкостной иерархиях

350 байт добавлено, 23:21, 13 апреля 2012
м
Нет описания правки
|statement=Пусть даны две конструируемые по памяти функции <tex>f</tex> и <tex>g</tex> такие, что <tex>\lim \limits_{n\rightarrow\infty} \frac{f(n)}{g(n)}=0</tex>, тогда <tex>DSPACE(g(n))\neq DSPACE(f(n))</tex>.
|proof=
Для доказательства воспользуемся диагональным методом. Рассмотрим функцию <tex>h(n)=\sqrt{f(n)g(n)}</tex>. Докажем, что и язык <tex>L=\{x|x(x)\Bigr|_{s\leq O(h(|x|))}\neq 1\}\in DSPACE(g(n))\setminus DSPACE(f(n))</tex>, где <tex>s</tex> — ограничение на память, в случае достижения которого выполнение программы прерывается. Иначе говоря, <tex>L</tex> — это язык программ, которые , если на вход подать саму программу, не возвращают 1 на собственном входе при условии ограничения на память <tex>O(h(|x|)</tex>. Докажем, что <tex>L\in DSPACE(g(n))\setminus DSPACE(f(n))</tex>. <span title="Т. к. h(n)=o(g(n))" style="border-bottom: 1px dotted; cursor: help;">Очевидно</span>, что <tex>L \in DSPACE(g(n))</tex>. Предположим теперь, что <tex>L \in DSPACE(f(n))</tex>. Тогда существует программа <tex>p</tex>, распознающая язык <tex>L</tex> и использующая не более <tex>c \cdot f(n)</tex> памяти. Т. к. <tex>f(n)=o(h(n))</tex>, то <tex>\exists n_0: \forall n>n_0~c\cdot f(n)<h(n)</tex>. Будем считать, что <tex>|p|>n_0</tex> (иначе добавим в программу пустые строки, искусственно увеличив её длину), тогда при вызове <tex>p(p)</tex> потребуется не более <tex>h(|p|)</tex> памяти. Выясним, принадлежит ли <tex>p</tex> языку <tex>L</tex>. Допустим, что <tex>p\in L</tex>, тогда <tex>p(p)=1</tex>, причём ответ будет посчитан за время значит, <tex>O(h(n))p\notin L</tex>, значит, по определению языка <tex>p\notin L</tex>. Пусть теперь <tex>p\notin L</tex>. Но тогда по определению языка <tex>p(p)=1</tex>, значитследовательно, <tex>p\in L</tex>. Таким образом, язык <tex>L</tex> не может быть из <tex>DSPACE(f(n))</tex>, следовательно, язык из <tex>DSPACE(g(n))\setminus DSPACE(f(n))</tex> найден.}}
76
правок

Навигация