Изменения

Перейти к: навигация, поиск

Дерево ван Эмде Боаса

25 байт добавлено, 13:18, 14 апреля 2012
Нет описания правки
Особенностью этой структуры является то, что все операции выполняются за <tex>O(\log k)</tex>, что асимптотически лучше, чем <tex>O(\log n)</tex> в большинстве других деревьев поиска, где <tex>n</tex> {{---}} количество элементов в дереве.
== Структура ==
[[Файл:Дерево_ван_Эмде_Боаса.png|right|570px|thumb|4-дерево, содержащее в себе 0, 1, 2, 5, 14 и 15. Красным цветом выделены непустые поддеревья]]
Во вспомогательном дереве <tex>aux</tex> будем хранить все такие числа <tex>p</tex>, что дерево <tex>children[p]</tex> не пусто.
== Операции ===== empty ===
Чтобы определить, пусто ли дерево, будем изначально инициализировать поле <tex>min</tex> числом, которое не лежит в интервале <tex>[0;2^k)</tex>. Назовем это число <tex>none</tex>. Например, это может быть <tex>-1</tex>, если мы храним в числа в знаковом целочисленном типе, или <tex>2^k</tex>, если в беззнаковом. Тогда проверка на пустоту дерева будет заключаться лишь в сравнении поля <tex>min</tex> с этим числом.
<pre>
</pre>
=== min и max ===
Так как мы храним в дереве минимальное и максимальное значения, то данные операции не требуют ничего, кроме вывода значения поля <tex>min</tex> или <tex>max</tex> в соответствии с запросом. Время выполнения данных операций соответственно <tex>O(1)</tex>.
 === find ===
Алгоритм поиска сам напрашивается из выше описанной структуры:
*если дерево пусто, то число не содержится в нашей структуре.
Заметим, что выполняя операцию <tex>find</tex>, мы либо спускаемся по дереву на один уровень ниже, либо, если нашли нужный нам элемент, выходим из нее. В худшем случае мы спустимся от корня до какого-нибудь 1-дерева, то есть выполним операцию <tex>find</tex> столько раз, какова высота нашего дерева. На каждом уровне мы совершаем <tex>O(1)</tex> операций. Следовательно время работы <tex>O(\log k)</tex>.
=== insert ===
Операция вставки элемента <tex>x</tex> состоит из нескольких частей:
Нетрудно увидеть, что данная операция работает за время <tex>O(\log k)</tex>. На каждом уровне дерева мы выполняем <tex>O(1)</tex> операций. После этого возможны 2 случая: поддерево <tex>children[high(x)]</tex> пусто, и мы будем производить дальнейшую вставку и в него, и во вспомогательное дерево <tex>aux</tex>, или же поддерево не пусто, и мы просто спустимся на уровень ниже. Но если поддерево <tex>children[high(x)]</tex> пусто, то вставка в него будет выполнена за <tex>O(1)</tex>, так как мы всего лишь обновим поля <tex>min</tex> и <tex>max</tex>. Все остальные операции будут выполнятся уже со вспомогательным деревом <tex>aux</tex>, высота которого на 1 уровень меньше, чем высота текущего. Если же поддерево <tex>children[high(x)]</tex> не пусто, то мы просто перейдем к вставке элемента в это поддерево, высота которого так же на 1 меньше, чем у текущего. В итоге, каждый раз, выполнив <tex>O(1)</tex> операций, мы переходим к дереву, высота которого на 1 меньше, чем у текущего. Следовательно, количество операций пропорционально высоте дерева, которая, как уже было показано, <tex>O(\log k)</tex>. То есть операция вставки займет <tex>O(\log k)</tex> времени.
=== remove ===
Удаление из дерева также делится на несколько подзадач:
*если <tex> min </tex> = <tex> max </tex> = <tex> x </tex>, значит в дереве один элемент, удалим его и отметим, что дерево пусто.
Оценка времени работы операции <tex>remove</tex> такая же, как и у операции <tex>insert</tex>. На каждом уровне дерева мы совершаем <tex>O(1)</tex> операций и переходим к удалению элементов максимум в двух деревьях(в одном поддереве и во вспомогательном дереве), чьи высоты на один меньше текущей. Но если мы производим операцию удаления из вспомогательного дерева, значит удаление из поддерева потребовало <tex>O(1)</tex> операций, так как оно содержало всего один элемент. В итоге, количество операций пропорционально высоте дерева, то есть <tex>O(\log k)</tex>.
=== next и prev ===
Алгоритм нахождения следующего элемента, как и два предыдущих, сводится к рассмотрению случая, когда дерево содержит не более одного элемента, либо к поиску в одном из его поддеревьев:
*если дерево пусто, или максимум этого дерева не превосходит <tex> x </tex>, то следующего элемента в этом дереве не существует.
Время работы, как и всех предыдущих функций, оценивается так же, и равно <tex>O(\log k)</tex>. Функция <tex> prev </tex> реализуется аналогично.
== Преимущества и недостатки ==
=== Преимущества ===
Главным преимуществом данной структуры является ее быстродействие. Асимптотически время работы операций дерева ван Эмде Боаса лучше, чем, например, у [[АВЛ-дерево|АВЛ]], [[Красно-черное дерево|красно-черных]], [[2-3 дерево|2-3]], [[Splay-дерево|splay]] и [[Декартово дерево|декартовых]] деревьев уже при небольшом количестве элементов. Конечно, из-за довольно непростой реализации возникают немалые постоянные множители, которые снижают практическую эффективность данной структуры. Но все же, при большом количестве элементов, эффективность дерева ван Эмде Боаса проявляется и на практике, что позволяет нам использовать данную структуру не только как эффективное дерево поиска, но и в других задачах. Например:
*cортировка последовательности из <tex> n </tex> чисел. Вставим элементы в дерево, найдем минимум и <tex> n - 1</tex> раз вызовем функцию <tex> next </tex>. Так как все операции занимают не более <tex> O(\log k)</tex> времени, то итоговая асимптотика алгоритма <tex> O(n \cdot \log k)</tex>, что даже лучше, чем [[Цифровая сортировка|цифровая сортировка]], асимптотика которой <tex> O(n \cdot k)</tex>.
*[[Алгоритм Дейкстры|алгоритм Дейкстры]]. Данный алгоритм с использованием [[Двоичная куча|двоичной кучи]] для поиска минимума работает за <tex> O(E \cdot \log V)</tex>, где <tex> V </tex> {{---}} количество вершин в графе, а <tex> E </tex> {{---}} количество ребер между ними. Если же вместо кучи использовать дерево ван Эмде Боаса, то релаксация и поиск минимума будут занимать уже не <tex> \log V </tex>, а <tex> \log k </tex>, и итоговая асимптотика этого алгоритма снизится до <tex> O(E \cdot \log k)</tex>.
=== Недостатки ===
*существенным недостатком данной структуры является то, что она позволяет хранить лишь целые неотрицательные числа, что существенно снижает область ее применения, по сравнению с другими деревьями поиска, которые не используют внутреннюю структуру элементов, хранящихся в них.
*другим серьезным недостатком является количество занимаемой памяти. Дерево, хранящее <tex> k </tex>-битные числа, занимает <tex> O(2^k) </tex> памяти, что несложно доказывается индукцией, учитывая, что <tex> S(2^k)=(2^{k/2} + 1) \cdot S(2^{k/2}) + O(2^{k/2})</tex>, где <tex> S(2^i) </tex> {{---}} количество памяти, занимаемое деревом, в котором хранятся <tex> i </tex>-битные числа. Впрочем, можно попытаться частично избежать огромного расхода памяти, создавая необходимые поддеревья «лениво», то есть только тогда, когда они нам потребуются.
== Источники ==
*[http://en.wikipedia.org/wiki/Van_Emde_Boas_tree Van Emde Boas tree — Wikipedia]

Навигация