Изменения

Перейти к: навигация, поиск
Более быстрый поиск
== Более быстрый поиск ==
Существует более быстрый алгоритм поиска образца в строке. Для этого используется <tex> lcp </tex> (longest common prefix). <br> Пусть <tex> L_p </tex> и <tex> R_p </tex> - левая и правая границы диапазона ответов в суффиксном массиве <tex> array </tex>. У любого суффикса в пределах этого диапазона есть префикс, который полностью совпадает с образцом. <br> Пусть <tex> L </tex> - левая граница диапазона поиска (изначально равна 0), <tex> R </tex> - правая граница диапазона поиска (изначально равна <tex> |S| - 1 </tex>), а <tex> M = (L + R) / 2 </tex>. <br> Пусть <tex> l = lcp(array[L], p) </tex>, а <tex> r = lcp(array[R], p) </tex>. В самом начале просто посчитаем <tex> l </tex> и <tex> r </tex> за линейное время, а во время выполнения алгоритма прямой пересчет производиться не будет, изменения будут происходить за <tex> O(1) </tex>. <br> Пусть <tex> m_l = lcp(array[L], array[M]) </tex>, а <tex> m_r = lcp(array[M],array[R]) </tex>. Подсчет <tex> m_l </tex> и <tex> m_r </tex> можно производить за <tex> O(1) </tex>, если применять [[Алгоритм Фарака-Колтона и Бендера|алгоритм Фарака-Колтона и Бендера]]. Любая пара суффиксов <tex> array </tex> из диапазона <tex> [L, M] </tex> имеет хотя бы <tex> m_l </tex> совпадений в префиксах. Аналогично любая пара суффиксов <tex> array </tex> из диапазона <tex> [M, R] </tex> имеет хотя бы <tex> m_r </tex> совпадений в префиксах. <br> Рассмотрим поиск левой границы диапазона ответов <tex> L_p </tex>. <br> Сразу проверим образец с суффиксами по краям исходного диапазона поиска <tex> L </tex> и <tex> R </tex>: если образец лексикографически больше последнего суффикса <tex> array </tex> или меньше первого суффикса, то образец не встречается в строке вовсе и поиск можно прекратить. <br> <tex> L_p </tex> ищется при помощи бинарного поиска по суффиксному массиву <tex> array </tex>. На каждом шаге поиска нам надо определять, на каком отрезке <tex> [L, M] </tex> или <tex> [M, R] </tex> надо продолжать поиск границы <tex> L_p </tex>. Каждую итерацию бинарного поиска будем сравнивать <tex> l </tex> и <tex> r </tex>. Если <tex> l \ge r </tex>, то возможно одно из трех: <br> 
* 1. <tex> m_l = l </tex>. Это означает, что у каждого суффикса из <tex> [L, M] </tex> есть хотя бы <tex> l </tex> совпадений с образцом. Проверим суффикс в позиции <tex> M </tex>, так как с ним совпадений у образца может получиться больше. Начнем сравнивать суффикс в позиции <tex> M </tex> начиная с <tex> l </tex>-ого символа. Мы либо найдем полное вхождение образца в суффикс, либо на каком-то шаге <tex> k </tex> получим несоответствие. В первом случае <tex> R = M </tex> и <tex> r = |p| </tex>, так как мы ищем левую границу диапазона ответов. Во втором случае все зависит от лексикографического несовпадения. Если символ <tex> l + k </tex> у образца меньше, чем у суффикса, то <tex> R = M </tex> и <tex> r = l + k </tex>, иначе <tex> L = M </tex> и <tex> l = l + k </tex>.<br>
* 2. <tex> m_l > l </tex>. Это означает, что каждая пара суффиксов из диапазона <tex> [L, M] </tex> имеет между собой больше совпадений, чем суффикс с левого края с образцом, поэтому продолжим поиск в диапазоне <tex> [M, R] </tex>. Значение <tex> l </tex> при этом не меняется, а <tex> L = M </tex>. <br>
Анонимный участник

Навигация