Изменения

Перейти к: навигация, поиск

Теорема Лаутемана

178 байт убрано, 11:39, 4 июня 2012
Нет описания правки
Рассмотрим язык <tex>L \in \mathrm{BPP}</tex>. Из того, что <tex>\mathrm{BPP} = \mathrm{BPP_{strong}}</tex>, следует, что существует такая [[Вероятностные вычисления. Вероятностная машина Тьюринга | вероятностная машина Тьюринга]] <tex>M</tex>, что <tex>P(M(x) = [x \in L]) \geqslant 1 - \frac{1}{2^{p(n)}}</tex>, где <tex>p(n)</tex> некоторый полином, который будет определен позднее. Пусть <tex>M</tex> использует <tex>r(n)</tex> бит случайной ленты.
Зафиксируем <tex>x</tex>. Возьмем <tex>G = \{0, 1\}^{r(n)}</tex>. Рассмотрим множество <tex>A_x = \{r \in G \bigm| M(x,r) = 1\}</tex>, являющееся событием в вероятностном пространстве <tex>\left( G, 2^{G}, P \right)</tex>, где <tex>P(r) = \frac{1}{|G|} \forall r \in G</tex>. Подберем теперь <tex>p(n)</tex> и <tex>k</tex> так, чтобы <tex>x \in L \Leftrightarrow A_x</tex> — <tex>k</tex>-большое.
Если <tex>x \in L</tex>, то <tex>P(A_xM(x) = 1) = \frac{|A_x|}{2^{r(n)}} \geqslant 1 - \frac{1}{2^{p(n)}} \Rightarrow |A_x| \geqslant 2^{r(n)} \left( 1 - \frac{1}{2^{p(n)}} \right)</tex>. Значит <tex>2^{r(n)} \left( 1 - \frac{|A_x|}{2^{r(n)}} \right)^k \leqslant 2^{r(n) - kp(n)}</tex>. Чтобы в этом случае <tex>A_x</tex> было бы <tex>k</tex>-большим потребуем <tex>2^{r(n) - kp(n)} < 1</tex>.
Если <tex>x \not \in L</tex>, то <tex>P(A_xM(x) = 1) = \frac{|A_x|}{2^{r(n)}} \leqslant \frac{1}{2^{p(n)}} \Rightarrow |A_x| \leqslant 2^{r(n) - p(n)}</tex>. Чтобы в этом случае <tex>A_x</tex> было бы <tex>k</tex>-маленьким потребуем <tex>2^{r(n) - p(n)} < \frac{2^{r(n)}}{k}</tex>.
Выберем <tex>p(n)</tex> так, чтобы <tex>\frac{r(n)}{p(n)} < 2^{p(n)} - 2</tex> и <tex>k = \lceil \frac{r(n)}{p(n)} \rceil + 1</tex>. Получаем <tex>\frac{r(n)}{p(n)} < k < 2^{p(n)}</tex>, то есть <tex>x \in L \Leftrightarrow A_x</tex> — <tex>k</tex>-большое.
Анонимный участник

Навигация