100
правок
Изменения
→Оценки вероятностей
{{Утверждение
|statement=
Если <tex>K \le |S| \le 2^{k - 1}</tex>, то <tex>P[\exists x \in S \bigm| h(x) = y] \ge \frac{3}{4}\cdot\frac{|S|}{2^k}</tex>, где <tex>h</tex> случайным образом выбрано из <tex>H_{m, k}</tex>, а <tex>y~-</tex> из <tex>\left\{0,1\right\}^k</tex>.
|proof=
Покажем, что для каждого <tex>y \in \left\{0,1\right\}^k</tex> и случайно выбранной функции <tex>h \in H_{m,k}</tex> справедливо <tex>P[\exists x \in S \bigm| h(x) = y] \ge \frac{3}{4} p</tex>.
Для каждого <tex>x \in S</tex> определим [[Вероятностное пространство, элементарный исход, событие|событие]] <tex>E_x = \left\{h \in H_{m, k} \bigm| h(x) = y\right\}</tex>. Тогда <tex>P[\exists x \in S \bigm| h(x) = y] = P[\bigcup \limits_{x \in S}E_x]</tex>, что [[Формула включения-исключения | формуле включения-исключения]] не меньше, чем <tex>\sum \limits_{x \in S}P[E_x] - \sum\limits_{x_1 \ne x_2 \in S}P[E_{x_1} \cap E_{x_2}]</tex>. Поскольку выбирались <tex>h \in H_{m, k}</tex>, то <tex>P[E_x] = \frac{1}{2^k}</tex> и <tex>P[E_{x_1} \cap E_{x_2}] = \frac{1}{2^{2k}}</tex>. Тогда <tex>P[\bigcup \limits_{x \in S}E_x] \ge \frac{|S|}{2^k} - \frac{1}{2}\cdot\frac{|S|^2}{2^{2k}} \ge \frac{3}{4}\cdot\frac{|S|}{2^k} \ge \frac{3}{4}p</tex>.
}}
Стоит отметить, что если <tex>|S| > 2^{k - 1}</tex>, то <tex>P</tex> может выбрать <tex>C \subseteq S</tex> так, чтобы <tex>K \le |C| \le 2^{k - 1}</tex>. А значит, в качестве оценки вероятности можно воспользоваться <tex>\frac{3}{4}p</tex>.