Изменения

Перейти к: навигация, поиск

Классы BPP и PP

7352 байта добавлено, 23:14, 4 июня 2012
Нет описания правки
==Определения=={{В разработкеОпределение|definition =<tex>\mathrm{BPP}</tex> (от ''bounded probabilistic polynomial'') — множество языков <tex>L</tex>, для которых существует такая [[Вероятностные вычисления. Вероятностная машина Тьюринга |ВМТ]] <tex>p</tex>, что для любого <tex>x</tex>:# <tex>P(p(x) = [x \in L]) \ge 2/3</tex>;# <tex>T(p, x) \le poly(|x|)</tex> для любой [[Вероятностные вычисления. Вероятностная машина Тьюринга |вероятностной ленты]].}}
Здесь <tex>\mathrm{BPP}</tex> — сложностный класс, допускающий двусторонние ошибки.Константу <tex>2/3</tex> можно заменить на любое число из промежутка <tex>(1/2, 1)</tex>, так как требуемой вероятности можно добиться множественным запуском <tex>p</tex>. Замена константы на <tex>1/2</tex> сделала бы данный класс равным <tex>\Sigma^*</tex> (программа, возвращающая результат функции ''random''(), подошла бы для любого языка). {{Определение|definition=<tex>\mathrm{BPP_{weak}}</tex> — класс языков <tex>L</tex>, для которых существует такая ВМТ <tex>p</tex>, что для любого <tex>x</tex>:#<tex>P(p(x)=[x \in L]) \ge \frac {1}{2} + \frac {1} {q(|x|)}</tex>, где <tex>q</tex>-полином и <tex>q(|x|) \ge 3</tex>;#<tex>T(p, x) \le poly(|x|)</tex> для любой вероятностной ленты.}} {{Определение|definition=<tex>\mathrm{BPP_{strong}}</tex> — класс языков <tex>L</tex>, для которых существует такая ВМТ <tex>p</tex>, что для любого <tex>x</tex>:#<tex>P(p(x)=[x \in L]) \ge 1 - \frac {1} {2^{q(|x|)}}</tex>, где <tex>q</tex>-полином и <tex>q(|x|) \ge 3</tex>;#<tex>T(p, x) \le poly(|x|)</tex> для любой вероятностной ленты.}} ==Теорема=={{Теорема|statement= <tex>\mathrm{BPP} = \mathrm{BPP_{weak}} = \mathrm{BPP_{strong}}</tex>.|proof=В доказательстве будет использоваться ''неравенство Чернова'': <br><tex>\forall p : \frac {1} {2} \le p \le 1: \sum\limits_{i = \lfloor \frac{n}{2} \rfloor + 1}^n \binom{n}{i}p^i (1 - p)^{n - i} \ge 1 - \mathrm{e}^{- 2n \left( {p - \frac{1}{2}} \right)^2}</tex>  * Докажем, что <tex>\mathrm{BPP} = \mathrm{BPP_{weak}}</tex># <tex>\mathrm{BPP} \subseteq \mathrm{BPP_{weak}}</tex> <br> Это следует из определений <tex>\mathrm{BPP}</tex> и <tex>\mathrm{BPP_{weak}}</tex>.# <tex>\mathrm{BPP_{weak}} \subseteq \mathrm{BPP}</tex> <br> Пусть <tex>L \in \mathrm{BPP_{weak}}</tex>. Тогда <tex>\exists p : P(p(x)=[x \in L]) \ge \frac {1}{2} + \frac {1} {q(|x|)}</tex>. <br> Построим ВМТ <tex>p_1</tex>, которая для входа <tex>x</tex> запускает <tex>p(x)</tex> <tex>n</tex> раз, и принимает <tex>x</tex>, если больше половины запусков принимают его. <br> Подберем <tex>n</tex>, такое, что <tex>P(p_1(x)=[x \in L]) \ge \frac {2}{3}</tex> и <tex>T(p_1(x)) \le poly(|x|)</tex>. <br> Вероятность <tex>P</tex> того, что <tex>p_1(x)</tex> даст правильный результат равна вероятности, что больше половины запусков <tex>p(x)</tex> дадут правильный результат. Тогда по схеме Бернулли <tex>P = \sum\limits_{i = \lfloor \frac{n}{2} \rfloor + 1}^n \binom{n}{i}p^i (1 - p)^{n - i}</tex>, где <tex>p=\frac {1}{2} + \frac {1} {q(|x|)}</tex> — вероятность, что запуск <tex>p(x)</tex> даст правильный ответ. По неравенству Чернова : <tex> P \ge 1 - \mathrm{e}^{- 2n \left( {p - \frac{1}{2}} \right)^2} </tex>. То есть для того, чтобы <tex>P(p(x)=[x \in L]) \ge \frac {2}{3}</tex> достаточно подобрать такое <tex>n</tex>, что <tex>1 - \mathrm{e}^{- 2n \left( {p - \frac{1}{2}} \right)^2} \ge \frac {2}{3}</tex>. Получаем, что <tex>n \ge \frac {\ln 3} {2(p - \frac {1} {2})^2} = \frac {{q(|x|)}^2 \ln 3}{2} </tex>. Возьмем <tex>n = \lceil \frac {{q(|x|)}^2 \ln 3}{2} \rceil </tex>, тогда неравенство <tex>T(p_1(x)) \le poly(|x|)</tex> будет выполнено. * Докажем, что <tex>\mathrm{BPP} = \mathrm{BPP_{strong}}</tex># <tex>\mathrm{BPP_{strong}} \subseteq \mathrm{BPP} </tex> <br> Это следует из определений <tex>\mathrm{BPP}</tex> и <tex>\mathrm{BPP_{strong}}</tex>.# <tex>\mathrm{BPP} \subseteq \mathrm{BPP_{strong}}</tex> <br> Пусть <tex>L \in \mathrm{BPP}</tex>. Тогда <tex>\exists p : P(p(x)=[x \in L]) \ge \frac {2}{3}</tex>. <br> Построим ВМТ <tex>p_1</tex>, которая для входа <tex>x</tex> запускает <tex>p(x)</tex> <tex>n</tex> раз, и принимает <tex>x</tex>, если больше половины запусков принимают его. <br> Подберем <tex>n</tex>, такое, что <tex>P(p_1(x)=[x \in L]) \ge 1 - \frac {1}{2^{q(|x|)}}</tex> и <tex>T(p_1(x)) \le poly(|x|)</tex>. <br> Проводя рассуждения, аналогичные изложенным в доказательстве <tex>\mathrm{BPP_{weak}} \subseteq \mathrm{BPP}</tex>, получаем, что <tex>1 - \mathrm{e}^{- 2n \left( {p - \frac{1}{2}} \right)^2} \ge 1 - \frac {1}{2^{q(|x|)}}</tex>, где <tex>p = \frac {2} {3}</tex>. Отсюда <tex>n \ge \frac {{q(|x|)} \ln 2}{2({\frac {2}{3} - \frac {1}{2}})^2} </tex>. Возьмем <tex>n = \lceil 18 {q(|x|)} \ln 2 \rceil </tex>, тогда неравенство <tex>T(p_1(x)) \le poly(|x|)</tex> будет статьявыполнено.}} {{Теорема|statement =<tex>\mathrm{RP} \cup \mathrm{coRP} \subset \mathrm{BPP}</tex>.|proof =Пусть <tex>p</tex> — программа для <tex>L \in \mathrm{RP}</tex>. Программу <tex>q</tex> для <tex>\mathrm{BPP}</tex> определим следующим образом: <tex>q</tex>(x) u <- <tex>p</tex>(x) v <- <tex>p</tex>(x) '''return''' u '''or''' vПусть <tex>x \in L</tex>. В этом случае вероятность ошибки равна <tex>\operatorname{P}(u = 0, v = 0) = \operatorname{P}(u = 0) \cdot \operatorname{P}(v = 0) \le 1/4</tex>. Пусть <tex>x \notin L</tex>. Тогда с вероятностью <tex>1</tex> будет верно <tex>u = 0, v = 0</tex> и <tex>q</tex> вернет правильный ответ. Аналогично доказывается, что <tex>\mathrm{coRP} \subset \mathrm{BPP}</tex>.}} == См. также ==* [[Вероятностные вычисления. Вероятностная машина Тьюринга]] <br>* [http://en.wikipedia.org/wiki/Chernoff_bound Неравенство Чернова] [[Категория: Теория сложности]]
205
правок

Навигация