689
правок
Изменения
добавил доказательство теоремы, исправил недочеты
{{Определение
|definition = Определим, так называемые, '''суммы Фейера''', как среднее арифметическое сумм Фурье.:<tex>\sigma_n(f,x) = \frac{1}{n+1}\sum\limits_{k=0}^{n}S_n(f,x)</tex>.
}}
Подставим в эту формулу интеграл Дирихле: <tex>\sigma_n=\frac{1}{n+1}\int\limits_{Q}f(x+t)D_n(t)dt = \int\limits_{Q}f(x)\frac{1}{n+1}\sum\limits_{k=0}^{n}D_k(t)dt</tex>
{{Определение
|definition = '''Ядро Фейера''' - <tex>\Phi_n(t)=\frac{1}{n+1}\sum\limits_{k=0}^{n}D_k(t)</tex>.
}}
Пользуясь определением, запишем <tex>\sigma_k(f,x)=\int\limits_{Q}f(x+t)\Phi_n(t)dt</tex>. Так как ядро Дирихле четное, то по формуле, ядро Фейера тоже четное. Заинтегрируем по <tex>Q</tex> ядро Фейера: <tex>\int\limits_{Q}\Phi_n(t)dt=\frac{1}{n+1}\sum\limits_{k=0}^{n}\int\limits_{Q}D_k(t)dt = 1</tex>, то есть ядро Фейера нормированно <tex>1</tex>. Поступая аналогично ядру Дирихле, можно придти к выводу <tex>\sigma_n(f,x)-S = \int\limits_{Q}(f(x+t)-f(x-t)-2S)\Phi_n(t)dt</tex> {{---}} основная формула для исследования сумм Фейера в индивидуальной точке. Найдем замкнутое выражение для ядра Фейера.
{{Утверждение
|statement= <tex dpi="150">\Phi_n=\frac{1}{2\pi(n+1)}(\frac{\sin{(\frac{n+1}{2})t}}{\sin{\frac{t}{2}}})^2</tex>|proof= <tex dpi="150">\Phi_n(t)=\frac{1}{n+1}\sum\limits_{k=0}^{n}\frac{1}{2\pi}\frac{\sin{(k+\frac{1}{2})t}}{\sin{\frac{t}{2}}}=\frac{1}{2\pi(n+1)}\frac{1}{\sin{\frac{t}{2}}}\sum\limits_{k=0}^{n}(\sin{k+\frac{1}{2}}t\sin{\frac{t}{2}})=</tex>
<tex dpi="150"> \frac{1}{2\pi(n+1)}\frac{1}{\sin{\frac{t}{2}}}\sum\limits_{k=0}^{n}\frac{1}{2}(\cos{kt}-\cos{(k+1)t})=\frac{1}{2\pi(n+1)}\frac{1-\cos{(n+1)t}}{2\sin^2{\frac{t}{2}}}=\frac{1}{2\pi(n+1)}\frac{\sin^2{\frac{n+1}{2}t}}{\sin^2{\frac{t}{2}}}</tex>
}}
Из этой формулы видно, что ядро Фейера всегда неотрицательно, в отличии от ядра Дирихле.
{{Определение
|definition = <tex>\int\limits_{Q}|D_n(t)|dt</tex> называется '''константой Лебега'''.
}}
{{Утверждение
|statement= <tex>\int\limits_{Q}|D_n(t)|dt \sim \ln{n}</tex> при больших <tex>n</tex>.
|proof=
<tex>\int\limits_{Q}|D_n(t)|dt \sim \int\limits_{0}^{\pi} \frac {|\sin (n+ \frac12)t|}{\sin \frac{t}{2}} dt = \int\limits_{0}^{\frac{\pi}{2}} \frac {|\sin (2n+ 1)t|}{\sin t} dt</tex>
Так как на <tex> [0; \frac{\pi}{2}] </tex> выполняется двойное неравенство <tex> \frac{2}{\pi} t \le \sin t \le t </tex>, то можно рассматривать <tex> \int\limits_{0}^{\frac{\pi}{2}} \frac {|\sin (2n+ 1)t|}{t} dt </tex>.
Разобьем интеграл на две части, <tex> \int\limits_{0}^{\frac{\pi}{2}} = \int\limits_{0}^{\frac{\pi}{2n+1}} + \int\limits_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} </tex>:
<tex> \int\limits_{0}^{\frac{\pi}{2n+1}} \frac {|\sin (2n+ 1)t|}{t} dt \le \int\limits_{0}^{\frac{\pi}{2n+1}} \frac {(2n + 1) |\sin t|}{t} dt \le const </tex>.
Оценка сверху: <tex> \int\limits_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac {|\sin (2n+ 1)t|}{t} dt \le \int\limits_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac {1}{t} dt = \ln t \bigg|_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \sim \ln n </tex>.
Оценка снизу: <tex> \int\limits_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac {|\sin (2n+ 1)t|}{t} dt \ge \int\limits_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac {\sin^2 (2n+ 1)t}{t} dt = \frac12 \int\limits_{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac{dt}{t} - \frac12 _{\frac{\pi}{2n+1}}^{\frac{\pi}{2}} \frac {\cos (4n+ 2)t}{t} dt \sim ln n </tex>.
Отсюда получаем требуемое.
}}
Именно с этим фактом связана трудность исследования рядов Фурье в индивидуальной точке, в отличии от сумм Фейера, где ядро положительно и условия сходимости выписываются проще.
Поясним смысл сумм Фейера: в свое время, рассматривая числовые ряды, мы говорили, что <tex>\sum\limits_{k=1}^{\infty}a_k = \lim\limits_{n \to \infty}S_n</tex>, где <tex>S_n=\sum\limits_{k=1}^{n}a_n</tex>. Для расходящихся рядов, можно применять обобщенные методы суммирования, главное, чтобы выполнялись свойства перманентности и эффективности. К примеру, если <tex>\sigma_n=\frac{1}{n}\sum\limits_{n=1}^{\infty}S_k \to S</tex>, то <tex>\sum\limits_{n=1}^{\infty}a_n = S</tex> по методу средних арифметических.
В точно таком же смысле, если взять ряд Фурье: <tex>\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}(a_n\cos{nx}+b_n\sin{nx})=\lim\limits_{n \to \infty}S_n(f,x)=\lim\limits_{n \to \infty}\sigma_n(f,x) </tex>(с.а.)</tex>, в . В этом и состоит смысл введения сумм Фейера.