Изменения

Перейти к: навигация, поиск

Примеры NP-полных языков. Теорема Кука

116 байт добавлено, 16:23, 9 июня 2012
м
Нет описания правки
|proof=
# <tex> \mathrm{SAT}\in \mathrm{NP} </tex> <br>Можно написать недетерминированную программу <tex>p</tex>, которая распознает язык <tex> \mathrm{SAT} </tex>. Она будет недетерминированно выбирать подстановку, проверять, истинна ли формула при такой подстановке, и выдавать ответ.
# <tex> \mathrm{SAT}\in \mathrm{NPH} </tex> <br> Теперь докажем, что <tex> \mathrm{SAT}\in \mathrm{NPH} </tex>. Для этого сведём задачу <tex> \mathrm{BH_{1N}} </tex>, которая <tex> \mathrm{NP} </tex>-полна, к <tex> \mathrm{SAT} </tex>. Тогда получится, что любой язык из <tex> \mathrm{NP} </tex> может быть [[Сведение_по_КарпуСведение относительно класса функций. Сведение по Карпу. Трудные и полные задачи|сведен по Карпу]] к <tex> \mathrm{BH_{1N}} </tex>, и, по транзитивности сведения по Карпу, к <tex> \mathrm{SAT} </tex>. <br> По определению языка <tex> \mathrm{BH_{1N}} </tex>, у нас есть недетерминированная машина Тьюринга <tex>m</tex>, причём можно считать, что её лента односторонняя и что машина не пишет на ленту пробелы, входное слово <tex>x</tex> и время <tex>t</tex>, заданное в унарной системе счисления. Нам же надо построить такую булеву формулу <tex>\varphi</tex>, что она выполнима тогда, и только тогда, когда <tex>m</tex>, получив на вход <tex>x</tex>, делает не более <tex>t</tex> шагов и допускает это слово. <br> В любой момент времени мгновенное описание (МО) <tex>m</tex> есть строка <tex>z\#_qyb</tex>, где <tex>b</tex> &mdash; строка, состоящая из такого количества пробелов, чтобы длина всего МО была <tex>t + 1.</tex> Соответственно, начальное МО задаётся так: <tex>\#_sxb</tex>. Если же <tex>|x| > t</tex>, то будем считать, что на ленту записаны лишь первые <tex>t</tex> символов, ведь <tex>m</tex> не может обработать большее количество символов за <tex>t</tex> шагов. <br> Также нам удобно считать, что все вычисления проходят ровно за <tex>t + 1</tex> шагов, даже если мы попали в допускающее состояние раньше. То есть, мы разрешим переход <tex>q \vdash q</tex>, если в МО <tex>q</tex> есть допускающее состояние, так что, чтобы проверить, допустила ли машина слово, надо лишь проверить наличие допускающего состояния в МО <tex>q_t</tex>. <br> Тогда процесс работы машины <tex>m</tex> на входе <tex>x</tex>, то есть цепочка переходов <tex>q_0 \vdash q_1 \vdash \ldots \vdash q_t</tex> может быть представлен следующей таблицей :
<table align="right" border="1" style="text-align:center" cellspacing="0">
<tr>
38
правок

Навигация