Изменения

Перейти к: навигация, поиск

Триангуляция полигонов (ушная + монотонная)

554 байта добавлено, 09:23, 10 июня 2012
Оценка работы
==== Оценка работы ====
Изначально в многоугольнике содержится <tex>\mathcal{O}(n)</tex> ушей. Нетрудно понять, что в процессе отрезания ушей, смежные точки могут тоже становиться ушами. В результате триангуляции образуется <tex>n - 3</tex> диагонали, соответственно максимальное количество точек, которые в процессе могут становиться ушами тоже <tex>n - 3</tex>. Итого общее количество ушей будет <tex>\mathcal{O}(n)</tex>. Определить, является ли вершина ухом можно за <tex>\mathcal{O}(n)</tex>, поскольку используется алгоритм определения принадлежности точки треугольнику -- это <tex>\mathcal{O}(3)</tex>. Таким образом общий процесс отрезания ушей займёт <tex>\mathcal{O}(n^2)</tex>. Невыпуклых вершин всего <tex>\mathcal{O}(n)</tex>, каждая из них обрабатывается за константу, поэтому общее время для их обработки <tex>\mathcal{O}(n)</tex>.
== Источники ==
* Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf (2000), Computational Geometry (2nd revised ed.), Springer-Verlag, ISBN 3-540-65620-0 Chapter 3: Polygon Triangulation: pp.45–61.
Анонимный участник

Навигация