81
правка
Изменения
Нет описания правки
'''Сортировка Хана (Yijie Han)''' {{---}} сложный алгоритм сортировки целых чисел со сложностью <tex>O(n \log\log n)</tex>, где <tex>n</tex> {{---}} количество элементов для сортировки.
Данная статья писалась на основе брошюры Хана, посвященной этой сортировке. Изложение материала в данной статье идет примерно в том же порядке, в каком она предоставлена в работе Хана.
== Алгоритм ==
{{Определение
|id=def3.
|definition=
Если мы сортируем целые числа из множества {0, 1, ..., <tex>m</tex> - 1} с длиной контейнера <tex>klog(m + n)</tex> с <tex>k</tex> >= 1, тогда мы сортируем с не консервативным преимуществом <tex>k</tex>.
}}
{{Определение
|id=def4.
|definition=
Для множества <tex>S</tex> определим
Мы разделим числа на 2 сегмента. Для <tex>a_{1}</tex> получим верхний сегмент 0, нижний 3; <tex>a_{2}</tex> верхний 1, нижний 1; <tex>a_{3}</tex> верхний 1, нижний 3; <tex>a_{4}</tex> верхний 2, нижний 2. Для элементов из S получим: для 1: нижний 1 т.к. он выделяется из нижнего сегмента <tex>a_{1}</tex>; для 4 нижний 0; для 8 нижний 0; для 9 нижний 1; для 13 верхний 3; для 14 верхний 3. Теперь все верхние сегменты, нижние сегменты 1 и 3, нижние сегменты 4, 5, 6, 7, нижние сегменты 8, 9, 10 формируют 4 новые задачи на разделение.
==Сортировка на маленьких целых==
Для лучшего понимания действия алгоритма и материала, изложенного в данной статье, в целом, ниже представлены несколько полезных лемм.
{{Лемма
|id=lemma2.
|statement=
<tex>n</tex> целых чисел можно отсортировать в <tex>sqrt{n}</tex> наборов <tex>S_{1}</tex>, <tex>S_{2}</tex>, ..., <tex>S_{sqrt{n}}</tex> таким образом, что в каждом наборе <tex>sqrt{n}</tex> чисел и <tex>S_{i}</tex> < <tex>S_{j}</tex> при <tex>i</tex> < <tex>j</tex>, за время <tex>O(nlog(logn)/logk)</tex> и место <tex>O(n)</tex> с не консервативным преимуществом <tex>klog(logn)</tex>
|proof=
}}
{{Лемма
|id=lemma3.
|statement=
Выбор <tex>s</tex>-о наибольшего числа среди <tex>n</tex> чисел упакованных в <tex>n/g</tex> контейнеров может быть сделана за <tex>O(nlogg/g)</tex> время и с использованием <tex>O(n/g)</tex> места. Конкретно медиана может быть так найдена.
|proof=
Так как мы можем делать попарное сравнение <tex>g</tex> чисел в одном контейнере с <tex>g</tex> числами в другом и извлекать большие числа из одного контейнера и меньшие из другого за константное время, мы можем упаковать медианы из первого, второго, ..., <tex>g</tex>-о чисел из 5 контейнеров в один контейнер за константное время. Таким образом набор <tex>S</tex> из медиан теперь содержится в <tex>n/(5g)</tex> контейнерах. Рекурсивно находим медиану <tex>m</tex> в <tex>S</tex>. Используя <tex>m</tex> уберем хотя бы <tex>n/4</tex> чисел среди <tex>n</tex>. Затем упакуем оставшиеся из <tex>n/g</tex> контейнеров в <tex>3n/4g</tex> контейнеров и затем продолжим рекурсию.
}}
{{Лемма
|id=lemma4.
|statement=
Если <tex>g</tex> целых чисел, в сумме использующие <tex>(logn)/2</tex> бит, упакованы в один контейнер, тогда <tex>n</tex> чисел в <tex>n/g</tex> контейнерах могут быть отсортированы за время <tex>O((n/g)logg)</tex>, с использованием <tex>O(n/g)</tex> места.
|proof=
}}