Изменения

Перейти к: навигация, поиск
Поиск границ диапазона ответов
<tex> L_p </tex> ищется при помощи бинарного поиска по суффиксному массиву <tex> array </tex>. На каждом шаге поиска нам надо определять, на каком отрезке <tex> [L, M] </tex> или <tex> [M, R] </tex> надо продолжать поиск границы <tex> L_p </tex>. Каждую итерацию бинарного поиска будем сравнивать <tex> l </tex> и <tex> r </tex>. Если <tex> l \ge r </tex>, то возможно одно из трех:
# <tex> m_l > l </tex>. Это означает, что каждая пара суффиксов из диапазона <tex> [L, M] </tex> имеет между собой больше совпадений, чем суффикс с левого края с образцом, поэтому продолжим поиск в диапазоне <tex> [M, R] </tex>. Значение <tex> l </tex> при этом не меняется, а <tex> L = M </tex>.
# <tex> m_l = l </tex>. Это означает, что у каждого суффикса из <tex> [L, M] </tex> есть хотя бы <tex> l </tex> совпадений с образцом. Проверим суффикс в позиции <tex> M </tex>, так как с ним совпадений у образца может получиться больше. Начнем сравнивать суффикс в позиции <tex> M </tex> начиная с <tex> l </tex>-ого символа. Мы либо найдем полное вхождение образца в суффикс, либо на каком-то шаге <tex> k </tex> получим несоответствие. В первом случае <tex> R = M </tex> и <tex> r = |p| </tex>, так как мы ищем левую границу диапазона ответов. Во втором случае все зависит от лексикографического несовпадения. Если символ <tex> l + k + 1 </tex> у образца меньше, чем у суффикса, то <tex> R = M </tex> и <tex> r = l + k + 1</tex>, иначе <tex> L = M </tex> и <tex> l = l + k + 1</tex>.
# <tex> m_l < l </tex>. Это означает, что совпадений у суффикса с левого края диапазона поиска с образцом больше, чем у суффикса в позиции <tex> M </tex>. Очевидно, что поиск надо продолжать между <tex> L </tex> и <tex> M </tex>, то есть <tex> R = M </tex>, а новое значение <tex> r = m_l </tex>.
# <tex> m_l = l </tex>. Это означает, что у каждого суффикса из <tex> [L, M] </tex> есть хотя бы <tex> l </tex> совпадений с образцом. Проверим суффикс в позиции <tex> M </tex>, так как с ним совпадений у образца может получиться больше. Начнем сравнивать суффикс в позиции <tex> M </tex> начиная с <tex> l </tex>-ого символа. Мы либо найдем полное вхождение образца в суффикс, либо на каком-то шаге <tex> k </tex> получим несоответствие. В первом случае <tex> R = M </tex> и <tex> r = |p| </tex>, так как мы ищем левую границу диапазона ответов. Во втором случае все зависит от лексикографического несовпадения. Если символ <tex> l + k + 1 </tex> у образца меньше, чем у суффикса, то <tex> R = M </tex> и <tex> r = l + k + 1</tex>, иначе <tex> L = M </tex> и <tex> l = l + k + 1</tex>.
# <tex> m_l > l </tex>. Это означает, что каждая пара суффиксов из диапазона <tex> [L, M] </tex> имеет между собой больше совпадений, чем суффикс с левого края с образцом, поэтому продолжим поиск в диапазоне <tex> [M, R] </tex>. Значение <tex> l </tex> при этом не меняется, а <tex> L = M </tex>.
[[Файл:left.png]]
Таким образом часть бинарного поиска мы сделаем при сравнении нескольких <tex> lcp </tex> между собой(каждое за <tex> O(1) </tex>), а если дойдет до сравнения символов, то любой символ <tex> p </tex> сравнивается не более одного раза(при сравнении мы берем <tex> max(l, r) </tex>, а значит никогда не возвращаемся назад). В самом начале мы посчитали <tex> l </tex> и <tex> r </tex> за <tex> O(p) </tex>. В итоге получаем сложность алгоритма <tex> O(p + log(s)) </tex>. Правда нужен предподсчет, чтобы можно было брать <tex> lcp </tex> для двух любых суффиксов <tex> array </tex> за <tex> O(1) </tex>.
tex>, начиная с позиции <tex> r </tex>.
===Псевдокод===
13
правок

Навигация