Изменения
→Доказательство корректности алгоритма
<tex> f_1 \ge f_2 \ge ... \ge f_m </tex>
Докажем написанное выше неравенство:
В этом случае, если <tex> f_i < f_{i+1} </tex> для некоторого <tex> 1 \le i \le m-1 </tex>, <tex>Level</tex> последней работы выполнявшейся на станке <tex> M_i </tex> в момент времени <tex> f_i - \varepsilon </tex> (где <tex> \varepsilon > 0</tex> достаточно мал),меньше чем <tex>Level</tex> последней работы на станке <tex> M_{i+1} </tex>. Пришли к противоречию.