Изменения
Нет описания правки
Устремляя <tex>\varepsilon</tex> к 0, получаем <tex> \bigvee\limits_a^b (f) + \bigvee\limits_b^c(f) \le \bigvee\limits_a^c (f)</tex>.
2) Для любого <tex>\varepsilon > 0 \exists \tau \bigvee\limits_a^c (f) - \varepsilon < \bigvee\limits_a^c (f, \tau)</tex>. Однако в это разбиение может не войти точка <tex>b</tex> в это разбиение, поэтому получим из него разбиение <tex>\tau' : a=x_0 < \dots < x_p = b < x_{p+1} < \dots < x_{p+m} = c</tex>. Пусть <tex>\tau_1</tex> — разбиение <tex>a=x_0 < \dots x_p=b</tex>, а <tex>\tau_2</tex> — разбиение <tex>x_p = b \dots x_{p+m} = c</tex>. Тогда:
<tex>\bigvee\limits_a^c (f) - \varepsilon < \bigvee\limits_a^c (f, \tau) \le \bigvee\limits_a^c (f, \tau') \le \bigvee\limits_a^b (f, \tau_1) + \bigvee\limits_b^c (f, \tau_2) \le \bigvee\limits_a^b (f) + \bigvee\limits_b^c (f) </tex>.
Определим как <tex>f_2</tex> функцию <tex>f_2(x) = f_1(x) - f(x)</tex>. Докажем, что она монотонно не убывает.
<tex>a < x_1 < x_2 < b</tex>. Надо доказать, что <tex>f_1(x_1) - f(x_1) \le f_1(x_2) - f(x_2)</tex>, или что <tex>f(x_2) - f(x_1) \le f_1(x_2) - f_1(x_1) = \bigvee\limits_{x_1}^{x_2} (f)</tex> (используем утверждение 1).
Но действительно <tex> f(x_2) - f(x_1) \le abs|(f(x_2) - f(x_1)) | \le \bigvee\limits_{x_1}^{x_2} (f)</tex>, ч. т. д.
В обратную сторону следствие верно, так как монотонные функции — ограниченные вариацией, и их разность, тоже ограниченая вариацией.