Изменения

Перейти к: навигация, поиск

Схема Бернулли

2 байта добавлено, 12:46, 19 декабря 2012
Нет описания правки
Для любого k = 0, 1, . . . , n вероятность получить в n испытаниях k успехов равна P(<tex>v_{n} </tex> = k) = <tex>\binom{n}{k}</tex> <tex> p ^ {k} </tex> <tex> q ^ {n - k}</tex>
|proof=
Событие A = {<tex> v_{n} </tex> = k} означает, что в n испытаниях схемы Бернулли произошло ровно k успехов. Рассмотрим один элементарный исход из события A: когда первые k испытаний завершились успехом, остальные неудачей. Поскольку испытания независимы, вероятность такого элементарного исхода равна <tex> p ^ {k} </tex> <tex> (1-p) ^ {n - k} </tex> Другие элементарные исходы из события A отличаются лишь расположением k успехов на n местах. Есть ровно <mathtex>\binom{n}{k}</mathtex> cпособов расположить k успехов на n местах. Поэтому событие A состоит из <tex>\binom{n}{k}</tex> элементарных исходов, вероятность каждого из которых равна <tex> p ^ {k} </tex> <tex> q ^ {n - k}</tex>
}}
Вычислим отдельно вероятности получить 4, 5 и 6 гербов после десяти подбрасываний монеты.
P(<tex>v_{10}</tex> = 4) = <tex>\binom{10}{4}</tex> <tex> \genfrac{}{}{}{0}{1}{2}^ {4} </tex> <tex> \genfrac{}{}{}{0}{1}{2}^ {10 - 4} </tex> ~=~ 0,205;
P(<tex>v_{10}</tex> = 5) = <tex>\binom{10}{5}</tex> <tex> \genfrac{}{}{}{0}{1}{2}^ {5} </tex> <tex> \genfrac{}{}{}{0}{1}{2}^ {10 - 5}</tex> ~=~ 0,246;
P(<tex>v_{10}</tex> = 6) = <tex>\binom{10}{6}</tex> <tex> \genfrac{}{}{}{0}{1}{2}^ {6} </tex> <tex> \genfrac{}{}{}{0}{1}{2}^ {10 - 6} </tex> ~=~ 0,205;
Сложим вероятности несовместных событий:
P(4)~<= ~<tex> v_{10}</tex> )~<= ~6) = P(<tex> v_{10} </tex> = 4) + P(<tex> v_{10} </tex> = 5) + P(<tex> v_{10} </tex> = 6) ~=~ 0,656.
668
правок

Навигация