Изменения

Перейти к: навигация, поиск

Схема Бернулли

444 байта добавлено, 23:11, 21 декабря 2012
Определение
Схемой Бернулли называется последовательность независимых испытаний, в каждом из которых возможны лишь два исхода — «успех» и «неудача», при этом успех в каждом испытании происходит с одной и той же вероятностью <tex> p \in \mathbb (0, 1)</tex> , а неудача — с вероятностью <tex> q =1 - p </tex>.
}}
Случайная величина <tex>\xi</tex> с таким распределением равна числу успехов в одном испытании схемы Бернулли с вероятностью <tex>p</tex> успеха : ни одного успеха или один успех. Функция распределения <tex> \xi</tex> имеет вид
[[Файл:Функция распределенияюgif]]
Обозначим через <tex> v_{n} </tex> число успехов, случившихся в <tex> n</tex> испытаниях схемы Бернулли. Эта (случайная) величина может принимать целые значения от 0 до <tex>n</tex> в зависимости от результатов испытаний. Например, если все <tex>n </tex> испытаний завершились неудачей, то величина <tex> v_{n} </tex> равна нулю.
(Набор вероятностей в теореме называется биномиальным распределением вероятностей.)
}}
 
== Биномиальное распределение ==
Говорят, что случайная величина <tex>\xi</tex> имеет '''биномиальное распределение''' с параметрами <tex>n \in \mathbb N</tex> и <tex> p \in \mathbb(0, 1)</tex> и пишут: <tex> \xi \in \mathbb B_{n, p}</tex> если <tex> \xi</tex> принимает значения <tex>k = 0, 1 .. n</tex> с вероятностями <tex dpi = "160">P(\xi = k) = \binom{n}{k} p^k (1 - p)^{n - k} </tex> . Случайная величина с таким распределением имеет смысл числа успехов в <tex> n </tex> испытаниях схемы Бернулли с вероятностью успеха <tex>p</tex>.
668
правок

Навигация