Изменения

Перейти к: навигация, поиск

Схема Бернулли

5 байт добавлено, 23:21, 21 декабря 2012
Пример
Рассмотрим один элементарный исход, благоприятствующий выпадению <tex>n_{1}</tex> единиц, <tex> n_{2}</tex> двоек, и так далее.
Это результат <tex>n</tex> экспериментов, когда все нужные исходы появились в некотором заранее заданном порядке. Вероятность такого результата равна произведению вероятностей <tex>p_{n_{1}}...p_{n_{m}}</tex>. Остальные благоприятные исходы отличаются лишь расположением чисел <tex>1, 2, . . . , m</tex> на <tex>n</tex> местах. Число таких исходов равно числу способов расположить на <tex>n</tex> местах <tex>n_{1}</tex> единиц, <tex>n_{2}</tex> двоек,и так далее Это число равно
<tex dpi = "160">\binom{n}{n_1}\cdot\binom{n - n_1 - n_2}{n_2} \cdot\binom{n - n_1 - n_2- n_3}{n_3} ...\cdot \binom{n - n_1 - n_2.. - n_{m -1}}{n_m} =
\frac {n!}{n_{1}! \cdot n_{2}! .. \cdot n_{m}!}
</tex>
668
правок

Навигация