Изменения
→Теорема
*В обратную сторону докажем по индукции(будем добавлять какую-нибудь вершину <tex>x</tex> из <tex>L</tex> в <tex>L'</tex> и доказывать что в <tex>L'</tex> есть паросочетание, насыщающее все вершины из L'). Таким образом, в конце получим что <tex>G'</tex> совпадает с <tex>G</tex>. Из этого будет следовать существование в <tex>G</tex> полного паросочетания.
#База: Одна вершина соединена хотя бы с одной вершиной из <tex>R</tex>. Следовательно база верна.
#Переход: Пусть после <tex>k</tex> добавлений в <tex>G'</tex> можно построить паросочетание <tex>P</tex>, насыщающее все вершины из <tex>L'</tex>. Докажем что после добавления вершины <tex>x</tex> в <tex>G'</tex> будет существовать паросочетание насыщающее все вершины <tex>L'</tex>.Рассмотрим <tex>G' + x </tex>. Рассмотрим множество вершин <tex>H</tex> - все вершины достижимые из <tex>x</tex>, если можно ходить из <tex>R'</tex> в <tex>L'</tex> только по ребрам из <tex>P</tex>, а из <tex>L'</tex> в <tex>R'</tex> по любым ребрам из G' + x.Тогда в H найдется вершина из R', не принадлежащая P, иначе , если рассмотреть вершины H из левой доли, то для них не будет выполнен |Hl| > |N(HL)|.
}}