Изменения

Перейти к: навигация, поиск
15 Теорема Рисса-Фишера, равенство Парсеваля.
= 15 Теорема Рисса-Фишера, равенство Парсеваля. =
{{Теорема
|author=Рисс-Фишер
|statement=
Пусть <tex>\{e_1, e_2, \ldots, e_n, \ldots\}</tex> - ортонормированная система в гильбертовом пространстве <tex>H</tex>, <tex>\sum\limits_{i=1}^{\infty} \alpha_i^2 \leq +\infty<</tex>. Тогда <tex>\exists ! x \in H : \alpha_i = \langle x, e_i \rangle</tex> и выполняется '''равенство Парсеваля''': <tex>\sum \alpha_i^2(x) = \|x\|^2</tex>
}}
 
= 16 Наилучшее приближение в <tex>H</tex> для случая выпуклого,замкнутого множества, <tex>H = H_1 \oplus H_2</tex>. =
Анонимный участник

Навигация