Изменения
Нет описания правки
Рассмотрим пример скрытой марковской модели. У Деда Мороза есть три мешка с подарками в разноцветной упаковке: красной, синей, зеленой и фиолетовой. Ночью Дед Мороз пробирается в квартиру и тайком выкладывает подарки под елкой в ряд, доставая по одному подарку из мешка. Наутро мы обнаруживаем упорядоченную последовательность из пяти подарков и хотим сделать наилучшее предположение о последовательности мешков, из которых он доставал эти подарки.
Дед Мороз с мешками {{---}} скрытая марковская модель. При этом 4 цвета {{---}} пространство из <tex>N</tex> наблюдений, 3 мешка {{---}} количество состояний <tex>K</tex>, 5 подарков {{---}} наши <tex>T</tex> наблюдений, каждое из которых представлено цифрой {{---}} номером цвета {{---}} от 1 до 5. Мы знаем, каковы вероятности того, что Дед Мороз начнет доставать подарки из мешка с номером <tex>i</tex> {{---}} вектор <tex>\pi[i]</tex>. Мы также знаем матрицу переходов <tex>A</tex>, какова вероятность того, что от мешка с номером <tex>i</tex> Дед Мороз переходит к мешку с номером <tex>j</tex>. Мешки Деда Мороза бесконечны, но мы точно знаем, каково соотношение цветов подарков в кажом каждом мешке ему загрузили на заводе в Великом Устюге. Это матрица вероятностей эмиссии <tex>B</tex>.
== Алгоритм ==