Изменения

Перейти к: навигация, поиск

Участник:Yulya3102/Матан3сем

2 байта добавлено, 20:44, 14 января 2013
м
Теорема о локальной обратимости
<tex> |F(x) - F(y)| \ge^{?} |x - y| </tex> // Это какая-то хрень, к тому же она в конце не доказана. Надо проверить, что <tex>\forall{x \neq y} |F(x) - F(y)| > 0</tex>, тогда отображение будет биекцией.
<tex> \exists c \ \forall h \in \mathbb{R}^m : |F'(x_0)h| \ge c|h|; \ U := B(x_0, r) < 0 \in O </tex>
<tex> \begin{matrix} 1: \forall x \in U & \det F'(x) \ne 0 \\ 2: \forall x \in U & \| F'(x) - F'(x_0) \| < \frac{c}{4} \end{matrix} </tex>
54
правки

Навигация