689
правок
Изменения
м
Нет описания правки
Заметим, что любое слово <tex>w</tex>, выводимое в этой грамматике, может быть представлено в виде <tex>w=x_{i1}x_{i2}...x_{ik}z_{ik}z_{ik-1}...z_{i1}</tex> или <tex>w=y_{i1}y_{i2}...y_{ik}z_{ik}z_{ik-1}...z_{i1}</tex>, причем, если <tex>L</tex> неоднозначна, то слово можно вывести двумя способами, и тогда <tex>w=x_{i1}x_{i2}...x_{ik}z_{ik}z_{ik-1}...z_{i1} = y_{i1}y_{i2}...y_{ik}z_{ik}z_{ik-1}...z_{i1}</tex>. Так как это одно и тоже слово, то все <tex> z_{i} </tex> в этом слове равны. А каждое <tex> z_{i} </tex> однозначно задает правило, по которому мы выводили слово.
Таким образом, если бы мы умели решать сформулированную нами ПСП, то могли бы сказать, однозначна грамматика или нет. То есть, если ПСП имеет решение, то мы можем восстановить два вывода слова. Если ПСП не имеет решения, то грамматика однозначна , и не существует двух выводов одного и того же слова. Таким образом, мы получили [[M-сводимость|m-сведение]] множества решений ПСП к множеству решений нашей задачи. А это значит, что задача об однозначности грамматики неразрешима.
Получили, что не существует алгоритма, определяющего по произвольной грамматике, является ли она однозначной.