Изменения

Перейти к: навигация, поиск

Спектр линейного оператора

183 байта убрано, 02:10, 16 января 2013
Нет описания правки
|statement=<tex>R_\lambda</tex> как функция из комплексного числа в ограниченный оператор, аналитична в <tex>\rho(A)</tex> и в бесконечно удаленной точке комплексной плоскости.
|proof=
{{TODO|t=какая-то хурма полная. Что такое <tex>\lambda_0</tex>, например?}}
пусть <tex> \lambda_0 \in \rho(A)</tex>:
 
<tex>A - \lambda I = (A - \lambda_0 I) - (\lambda - \lambda_0)I = (A - \lambda_0 I) - (\lambda - \lambda_0)(A - \lambda_0 I)R_{\lambda_0} = (A - \lambda_0 I)(I - (\lambda - \lambda_0)R_{\lambda_0})</tex>
<tex>(I - (\lambda - \lambda_0)R_{\lambda_0}) ^ {-1} = \sum\limits_{n=0}^{\infty} R_{\lambda_0}^n (\lambda - \lambda_0)^n</tex> {{---}} сходится при <tex>|\lambda - \lambda_0| \approx 0</tex>. {{TODO|t=вот здесь что-то подозрительное}}
<tex>(A - \lambda I ) ^ {-1} = (A - R_{\lambda_0 I) } \sum\limits_{n=0}^{\infty} R_{\lambda_0}^n (\lambda - \lambda_0)^n = \sum\limits_{n=0}^{\infty} R_{\lambda_0}^{n-+1} (\lambda - \lambda_0)^n</tex>, следовательно, <tex>(A - \lambda I)^{-1}</tex> аналитична.{{TODO|t=WAT}}
Также, так как <tex>A - \lambda I = -\lambda (I - \frac1\lambda A)</tex>, то при <tex>|\lambda| \approx \infty</tex>, <tex>R_\lambda = -\sum\limits_{n=0}^{\infty} \frac{A^n}{\lambda^{n-1}}</tex>, и <tex>R_\lambda</tex> аналитична при <tex>\lambda = \infty</tex>.
Анонимный участник

Навигация