Изменения

Перейти к: навигация, поиск

Теорема Банаха об обратном операторе

14 байт убрано, 17:15, 18 января 2013
м
Нет описания правки
Тогда оператор <tex> I - C </tex>, где <tex> I </tex> {{---}} тождественный оператор, непрерывно обратим.
|proof=
<tex> \mathbb{L}(X) </tex> {{---}} B-пространство.
Рассмотрим следующие суммы: <tex> S_n = \sum\limits_{k=0}^n C^k </tex>.
\sum\limits_{k=0}^{\infty} \| C \|^k = \frac 1{1 - \| C \|} < \infty </tex>.
Так как <tex> \| C \| < 1 </tex>, то существует такой <tex> S \in \mathbb{L}(X) </tex>, что <tex> S = \sum\limits_{k=0}^{\infty} C^k </tex>.
<tex> S_n \xrightarrow[n \to \infty]{} S </tex>. Поскольку <tex> \| C \| < 1 </tex>, то <tex> \| C^k \| \to 0 </tex>, а значит, и <tex> C^k \to \mathbb{O} </tex>.
689
правок

Навигация