Изменения
→Теорема о двух эквивалентных определениях NP (NP = Sigma1)
== Класс P/poly ==
{{Определение
|definition=
}}
<tex>\mathrm{BPP}</tex> — сложностный класс, допускающий двусторонние ошибки.
Константу <tex>2/3</tex> можно заменить на любое число из промежутка <tex>(1/2, 1)</tex>, так как требуемой вероятности можно добиться множественным запуском <tex>p</tex>. Замена константы на <tex>1/2</tex> сделала бы данный класс равным <tex>\Sigma^*</tex> (программа, возвращающая результат функции <code>Random.nextBoolean</code>''random''(), подошла бы для любого языка).
== Класс RP ==
Пусть <tex>L \in \mathrm{\Sigma_1}</tex>. Тогда существуют <tex>R(x,y)</tex> и полином <tex>p</tex> из определения <tex>\mathrm{\Sigma_1}</tex>. Построим недетерминированную программу <tex>q(x)</tex>, разрешающую <tex>L</tex>.
q(x):
y ← ? <tex>\{0,1\}^{p(|x|)}</tex>
return R(x,y)
Если <tex>x\in L</tex>, то программа сможет «угадать» подходящий сертификат. Если <tex>x\notin L</tex>, то подходящего сертификата не существует по определению. Таким образом, <tex>q</tex> разрешает <tex>L</tex>, следовательно <tex>L\in \mathrm{NP}</tex>.