Изменения

Перейти к: навигация, поиск
Нет описания правки
База индукции: из первого свойства хорошего языка получаем, что <tex>\forall A: Reg_0 \subset A</tex>. Поэтому из того, что <tex>Reg'</tex> есть пересечение всех хороших языков получаем: <tex>Reg'=\bigcap_{\text{A- xop.}}A \Rightarrow Reg_0 \subset Reg'</tex>.
Индукционный переход: пусть <tex>Reg_i \subset Reg'</tex>. Докажем, что <tex>Reg_{i+1} \subset Reg'</tex>. Действительно, так как <tex>Reg_i \subset Reg'</tex>, то <tex>\forall A: Reg_i \subset A</tex>. Рассмотрим способ построения <tex>Reg_{i+1}</tex>: <tex>Reg_{i+1} = Reg_i \cup \left\{L \cup M, LM, L^*| L, M \in Reg_i\right\}</tex>. Тогда, принимая во внимание вышесказанное, получаем, что <tex>\forall A: L, M \in A</tex>.
Пусть Так как <tex>Reg_i \subset Reg'A - </tex>. Докажемхорошее, получаем, что <tex>Reg_{i+1} \subset Reg'</tex>. Действительно, так как тоже содержится в <tex>Reg_i \subset Reg'A</tex>, то т.е. <tex>\forall A: Reg_i - xop. \subset A</tex>. Рассмотрим способ построения <tex>Rightarrow Reg_{i+1}</tex>: <tex>Reg_{i+1} = Reg_i \cup \left\{L \cup M, LM, L^*| L, M \in Reg_i\right\}</tex>. Тогда, принимая во внимание вышесказанное, получаем, что <tex>\forall A: L, M \in subset A</tex>. Тогда, принимая во внимание второе свойство хорошего множества, получаем, что операция образования <tex>Reg_{i+1}</tex> не вывела нас за рамки хорошего множества, так как полученное множество осталось замкнутым относительно операций объединения, конкатенации и замыкания Клини. Таким образом получили, что если <tex>Reg_i \subset Reg' \Rightarrow Reg_{i+1} \subset Reg'</tex>. Значит <tex>Reg \subset Reg'</tex>.
*'''<tex>Reg' \subset Reg</tex>'''
Анонимный участник

Навигация