Изменения

Перейти к: навигация, поиск

Алгоритм Хопкрофта

Нет изменений в размере, 13:25, 15 декабря 2013
м
Время работы
Пусть <tex>a \in \Sigma</tex> и <tex>p \in Q</tex>. Тогда количество пар <tex>(C,a)</tex>, где <tex>p \in C</tex>, которые мы удалим из очереди, не превосходит <tex>\log_2(|Q|)</tex> для фиксированных <tex>a</tex> и <tex>p</tex>.
|proof =
Рассмотрим пару <tex>(C,a)</tex>, где <tex>p \in C</tex>, которую мы удаляем из очереди. И пусть <tex>(C',a)</tex> следующая пара, где <tex>p \in C'</tex> и которую мы удалим из очереди. Согласно нашему алгоритму класс <tex>C'</tex> мог появиться в очереди только после операции <tex>Replacereplace</tex>. Но после первого же разбиения класса <tex>C</tex> на подклассы мы добавим в очередь пару <tex>(C'', a)</tex>, где <tex>C''</tex> меньший из образовавшихся подклассов, то есть <tex>|C''| \leqslant |C| \ / \ 2</tex>. Так же заметим, что <tex>C' \subseteq C''</tex>, а следовательно <tex>|C'| \leqslant |C| \ / \ 2</tex>. Но тогда таких пар не может быть больше, чем <tex>\log_2(|Q|)</tex>.
}}
*Операции с множеством <tex>T'</tex> и разбиение классов на подклассы требуют <tex>O(\sum(|Inverse|))</tex> времени. Но по [[#Лемма4 | лемме(4)]] <tex>\sum(|Inverse|)</tex> не превосходит <tex>|\Sigma| |Q| \log_2(|Q|)</tex>, то есть данная часть алгоритма выполняется за <tex>O(|\Sigma| |Q| \log_2(|Q|))</tex>.
*В [[#Лемма1 | лемме(1)]] мы показали, что в процессе работы алгоритма не может появится больше, чем <tex>2 |Q| - 1</tex> классов, из чего следует, что количество операций <tex>Replacereplace</tex> равно <tex>O(|\Sigma| |Q|)</tex>.
Итого, получается, что время работы алгоритма Хопкрофта не превышает <tex> O(|\Sigma| |Q|) + O(|\Sigma| |Q|) + O(|\Sigma| |Q| \log_2(|Q|)) + O(|\Sigma| |Q|) = O(|\Sigma| |Q| \log_2(|Q|))</tex>.
403
правки

Навигация