Если две вершины графа лежат на цикле, то они лежат на простом цикле.
|proof=
Возьмём любой из существующих циклов <math>V_0E_1V_1E_2V_2 ... V_{n-1}E_n</math>. Для вершины <math>V_i</math> найдём момент её следующего вхождения в цикл – <math>V_j</math> – и, если такой нашёлся, удалим отрезки цикла от <math>V_0</math> до <math>E_i</math>, включительно, и от <math>E_{j+1}</math> до <math>E_n</math>, включительно. Получившаяся последовательность вершин и рёбер графа останется циклом, и в нём вершина <math>V_i</math> будет содержаться ровно один раз. Начнём процесс с вершины <math>V_0</math> и будем повторять его каждый раз для следующей вершины нового цикла, пока не дойдём до последней. По построению, получившийся цикл будет содержать каждую из вершин графа не более одного раза, а значит, будет простым.
''Альтернативное:''
Выберем из всех циклов в графе цикл наименьшей длины. Пусть он не простой; тогда в нём содержатся две одинаковые вершины <math>V_i</math> и <math>V_j</math>, <math>i < j</math>. Удалим из исходного цикла отрезки от <math>V_0</math> до <math>E_i</math>, включительно, и от <math>E_{j+1}</math> до <math>E_n</math>, включительно. Конечная последовательность также будет циклом и станет короче исходной. Значит, исходный цикл не был кратчайшим; предположение неверно, выбранный цикл – простой.
}}