Изменения

Перейти к: навигация, поиск

Представление вещественных чисел

2176 байт добавлено, 21:44, 29 октября 2010
Нет описания правки
'''Плавающая запятая''' — форма представления дробных чисел, в которой число хранится в форме [http://ru.wikipedia.org/wiki/%D0%AD%D0%BA%D1%81%D0%BF%D0%BE%D0%BD%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%B7%D0%B0%D0%BF%D0%B8%D1%81%D1%8C мантиссы] и [http://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BA%D0%B0%D0%B7%D0%B0%D1%82%D0%B5%D0%BB%D1%8C_%D1%81%D1%82%D0%B5%D0%BF%D0%B5%D0%BD%D0%B8 показателя степени]. При этом число с плавающей запятой имеет фиксированную относительную точность и изменяющуюся абсолютную. Наиболее часто используемое представление утверждено в стандарте [http://ru.wikipedia.org/wiki/IEEE_754 IEEE 754].
}}
 
При этом лишь некоторые из вещественных чисел могут быть представлены в памяти компьютера точным значением, в то время как остальные числа представляются приближёнными значениями.
В наиболее распространённом формате число с плавающей запятой представляется в виде последовательности битов, часть из которых кодирует собой мантиссу числа, другая часть — показатель степени, и ещё один бит используется для указания знака числа, 0 - если число положительное, 1 - если число отрицательное.
 
==== Нормальная форма и нормализованная форма ====
 
''Нормальной формой'' числа с плавающей запятой называется такая форма, в которой мантисса (без учёта знака) находится на полуинтервале [0; 1). Такая форма записи имеет недостаток: некоторые числа записываются неоднозначно (например, 0,0001 можно записать в 4 формах — 0,0001{{e|0}}, 0,001{{e|−1}}, 0,01{{e|−2}}, 0,1{{e|−3}}), поэтому распространена также другая форма записи — нормализованная, в которой мантисса десятичного числа принимает значения от 1 (включительно) до 10 (не включительно), а мантисса двоичного числа принимает значения от 1 (включительно) до 2 (не включительно). В такой форме любое число (кроме 0) записывается единственным образом. Недостаток заключается в том, что в таком виде невозможно представить 0, поэтому представление чисел в информатике предусматривает специальный признак (бит) для числа 0.
Так как старший разряд (целая часть числа) мантиссы двоичного числа (кроме 0) в нормализованном виде равен «1», то при записи мантиссы числа в эвм старший разряд можно не записывать, что и используется в стандарте [http://ru.wikipedia.org/wiki/IEEE_754 IEEE 754]. В позиционных системах счисления с основанием большим, чем 2 (в троичной, четверичной и др.), этого свойства нет.
419
правок

Навигация