Изменения

Перейти к: навигация, поиск

Дерево поиска, наивная реализация

290 байт добавлено, 13:30, 24 мая 2015
м
Нет описания правки
=== Удаление ===
Для удаления узла из бинарного дерева поиска нужно рассмотреть три возможные ситуации. Если у узла нет дочерних узлов, то у его родителя нужно просто заменить указатель на <tex>null</tex>. Если у узла есть только один дочерний узел, то нужно создать новую связь между родителем удаляемого узла и его дочерним узлом. Наконец, если у узла два дочерних узла, то нужно найти следующий за ним элемент(у этого элемента не будет левого потомка) и переместить его на место удаляемого узла. Время работы алгоритма <tex>O(h)</tex>.
{| border="1" cellpadding="5" cellspacing="0"
!Случай
y.parent.right = x
== Ссылки См. также==* [[Поисковые структуры данных]]* [http://ru.wikipedia.org/wiki/%D0%94%D0%B2%D0%BE%D0%B8%D1%87%D0%BD%D0%BE%D0%B5_%D0%B4%D0%B5%D1%80%D0%B5%D0%B2%D0%BE_%D0%BF%D0%BE%D0%B8%D1%81%D0%BA%D0%B0 Двоичное [Рандомизированное бинарное дерево поиска]]
== Литература Источники информации==1* [https://ru. wikipedia.org/wiki/%D0%94%D0%B2%D0%BE%D0%B8%D1%87%D0%BD%D0%BE%D0%B5_%D0%B4%D0%B5%D1%80%D0%B5%D0%B2%D0%BE_%D0%BF%D0%BE%D0%B8%D1%81%D0%BA%D0%B0 Википедия {{---}} Двоичное дерево поиска]* [https://en.wikipedia.org/wiki/Binary_search_tree Wikipedia {{---}} Binary search tree]* Кормен, Т., Лейзерсон, Ч., Ривест, Р., Штайн, К. Алгоритмы: построение и анализ = Introduction to Algorithms / Под ред. И. В. Красикова. — 2-е изд. — М.: Вильямс, 2005. — 1296 с. — ISBN 5-8459-0857-4
[[Категория: Деревья поиска]]
[[Категория: Дискретная математика и алгоритмы]]
188
правок

Навигация