Изменения

Перейти к: навигация, поиск

Разрешение коллизий

6 байт добавлено, 23:31, 26 мая 2015
Нет описания правки
Есть два удобных способа это сделать. Первый состоит в том, что в качестве размера таблицы используется простое число, а <tex> h_2 </tex> возвращает натуральные числа, меньшие <tex> m </tex>. Второй {{---}} размер таблицы является степенью двойки, а <tex> h_2 </tex> возвращает нечетные значения.
Например, если размер таблицы равен <tex> m </tex>, то в качестве <tex> h_2 </tex> можно использовать функцию вида <tex> h_2(k) = k \mod bmod (m-1) + 1 </tex>
[[Файл: Вставка при двойном хэшировании.svg.jpeg|thumb|right|Вставка при двойном хешировании]]
<center>
<tex> h(k,i) = (h_1(k) + i \cdot h_2(k)) \mod bmod 13 </tex>
</center>
<center>
<tex> h_1(k) = k \mod bmod 13 </tex>
</center>
<center>
<tex> h_2(k) = 1 + k \mod bmod 11 </tex>
</center>
Мы хотим вставить ключ 14. Изначально <tex> i = 0 </tex>. Тогда <tex> h(14,0) = (h_1(14) + 0\cdot h_2(14)) \mod bmod 13 = 1 </tex>. Но ячейка с индексом 1 занята, поэтому увеличиваем <tex> i </tex> на 1 и пересчитываем значение хеш-функции. Делаем так, пока не дойдем до пустой ячейки. При <tex> i = 2 </tex> получаем <tex> h(14,2) = (h_1(14) + 2\cdot h_2(14)) \mod bmod 13 = 9 </tex>. Ячейка с номером 9 свободна, значит записываем туда наш ключ.
Таким образом, основная особенность двойного хеширования состоит в том, что при различных <tex> k </tex> пара <tex> (h_1(k),h_2(k)) </tex> дает различные последовательности ячеек для исследования.
Анонимный участник

Навигация