97
правок
Изменения
Нет описания правки
== Постановка задачи ==
{{Задача|definition = Дана циклическая строка <tex>s[0 .. n - 1]</tex>. Суффиксом циклической строки <tex>s</tex> называется строка <tex>s[i .. n - 1] + s[0 .. i - 1], i < n </tex> (будем называть такую строкую суффиксом под номером <tex>i</tex>). Требуется отсортировать все её суффиксы в порядке лексикографической сортировки.}}
== Решение ==
Рассматриваемый алгоритм состоит из <tex>\lceil\log n\rceil + 1</tex> итераций. На <tex>k</tex>-той итерации (<tex>k=0..\lceil\log n\rceil </tex>) сортируются циклические подстроки длины <tex>2^k</tex>. На последней, <tex>\lceil\log n\rceil</tex>-ой итерации, будут сортироваться подстроки длины <tex>2^{\lceil\log n\rceil} \ge geqslant n</tex>, что эквивалентно сортировке циклических сдвигов.
На каждой итерации алгоритм помимо перестановки <tex>p[0..n-1]</tex> индексов циклических подстрок будет поддерживать для каждой циклической подстроки длиной <tex>2^k</tex>, начинающейся в позиции <tex>i</tex>, номер класса эквивалентности <tex>c[i]</tex>, которому эта подстрока принадлежит. В самом деле, среди подстрок могут быть одинаковые, и алгоритму понадобится информация об этом. Кроме того, номера классов эквивалентности <tex>c[i]</tex> будем давать таким образом, чтобы они сохраняли и информацию о порядке: если один суффикс меньше другого, то и номер класса он должен получить меньший.
[[Категория: Алгоритмы и структуры данных]]
[[Категория: Суффиксный массив]]
[[Категория: Структуры данных]]