53
правки
Изменения
Нет описания правки
Рассмотрим укладку графа <tex>G</tex> на сфере. Возьмем на сфере точку <tex>N</tex>, не лежащую на ребре, и не вершину. Выберем на сфере точку <tex>S</tex> противолежащую <tex>N</tex> (<tex>N</tex> и <tex>S</tex> лежат на одном диаметре и при этом не совпадают). Проведем через точку <tex>S</tex> касательную к сфере плоскость. Спроектируем на плоскость все точки сферы, проведя все возможные лучи из точки <tex>N</tex> через точки сферы до пересечения с плоскостью (рис. 1) . Ясно, что эта проекция дает укладку графа <tex>G</tex> на плоскости.
[[Файл:SphereToPlane.png|200px|thumb|right|рис. 1.Проекция графа со сферы на плоскость. <tex>S</tex> {{---}} точка касания, <tex>N</tex> {{---}} противоположная точка.]]
|proof=
Возьмем укладку графа на сфере. Перенесем эту укладку графа на сфере в укладку на плоскости так как это сделано в [[#l1|лемме I]], за точку <tex>N</tex> возьмем точку на сфере, не лежащую на ребре, не являющуюся вершиной и принадлежащую грани на границе которой лежит выделенное ребро. Полученная укладка на плоскости обладает нужным нам свойством(рис.2).[[Файл:Edge_on_spehere.png|200px|thumb|right|рис. 2.]]
}}
Пусть утверждение верно для <tex>|VT| < m</tex>. Рассмотрим <tex>T</tex>, для которого <tex>|VT| = m > 1</tex>, и соответствующий <tex>T</tex> подграф <tex>G'</tex> графа <tex>G</tex>. Докажем, что <tex>G'</tex> планарен.
Положим <tex>G_1</tex> — компонента реберной двусвязности графа <tex>G'</tex> являющийся висячей вершиной дерева <tex>T</tex>, a <tex>e</tex> — мост в <tex>G'</tex> инцидентный <tex>G_1</tex> в <tex>T</tex> (рис. 23). <tex>G_1</tex> планарен по условию теоремы, т.к. компоненты реберной двусвязности графа <tex>G'</tex> совпадают с компонентами реберной двусвязности графа <tex>G</tex>. Далее рассмотрим подграф <tex>G_2</tex> графа <tex>G'</tex>, соответствующий дереву <tex>T\backslash \{G_1\}</tex>. Поскольку <tex>G_1</tex> — висячая вершина <tex>T</tex>, то <tex>T\backslash \{G_1\}</tex> связен, и, очевидно, также как и <tex>T</tex> является подграфом графа компонент реберной двусвязности <tex>G</tex>. Итак <tex>G_2</tex> планарен по предположению индукции, т.к. <tex>|V(T\backslash \{G_1\})| = |VT| - 1 = m - 1 < m</tex>.
Из определения ребер графа компонент реберной двусвязности получаем, что графы <tex>G_1</tex> и <tex>G_2</tex> соединены в графе <tex>G'</tex> единственным мостом <tex>e \in G'</tex> инцидентным блоку <tex>G_1</tex> в дереве <tex>T</tex>. Поскольку <tex>T = G_1\cup e\cup G_2</tex>, то и <tex>G' = G_1\cup e\cup G_2</tex>. Покажем как из укладок <tex>G_1</tex> и <tex>G_2</tex> получить укладку <tex>G'</tex>.
[[Файл:G1G2T.png|200px|thumb|center|рис. 23. Удаление <tex>G_1</tex> из графа компонент реберной двусвязности]]
Уложим <tex>G_2</tex> на сфере и уложим <tex>G_1</tex> на плоскости так, чтобы ребро <tex>e_1 \in G_1</tex> смежное с <tex>e</tex> в G' (если таковое имеется) оказалось на границе внешней грани (по [[#l2|лемме II]] это возможно, рис. 4). Если такого ребра <tex>e_1</tex> не существует, значит компонента реберной двусвязности <tex>G_1</tex> — тривиальный граф, в таком случае возьмем любую укладку <tex>G_1</tex> на плоскости. Пусть <tex>u\in G_2</tex> {{---}} вершина инцидентная <tex>e</tex>. Сожмем часть плоскости, содержащую укладку <tex>G_1</tex>, так, чтобы она вмещалась в одну из граней укладки <tex>G_2</tex> смежную с <tex>u</tex>. Проведем жорднанову кривую, соответствующую ребру <tex>e</tex>, от вершины <tex>u</tex> к инцидентной <tex>e</tex> вершине графа <tex>G_1</tex> так, чтобы она не пересекалась с укладками <tex>G_1</tex> и <tex>G_2</tex>. Мы получили укладку графа <tex>G'</tex> на сфере, а значит (по [[#l1|лемме I]]) <tex>G'</tex> планарен, следовательно предположение индукции верно.
[[Файл:G1eT-G1.png|thumb|200px|center|рис. 34. Укладка <tex>G_1</tex> и <tex>G_2</tex> на сфере]]
</div>