Изменения
→Метод хеширования
[[Наивный алгоритм поиска подстроки в строке]] работает за <tex>O\left(n^2\right)</tex> в худщем случае - слишком долго. Чтобы ускорить этот процесс, можно воспользоваться методом хеширования.
{{Определение
|definition = Пусть дана строка <tex>s[1 \ldots ..n]</tex>. Тогда полиномиальным хешем строки <tex>s</tex> называется число <tex>h = \mathrm{hash}(s[1..n]) = p^{n - 1} s[1] + ... + p^{0} s[n]</tex>, где <tex>p</tex> - некоторое натуральное число, а <tex>s[i]</tex> - код <tex>i</tex>-ого символа строки <tex>s</tex>.
}}
Проблему переполнения при вычислении хешей довольно больших строк можно решить так: будем считать хеши по модулю <tex>r</tex> - некоторому большому числу (будем брать <tex>r =2^{64}</tex>, чтобы модуль брался автоматически при переполнении типов). Число <tex>p</tex> для их подсчета должно быть, во-первых, больше кода самого большого символа в строках, а во-вторых, взаимно простым с модулем (в нашем случае — с 2^{64}, т.е. оно должно быть нечетным).