Изменения

Перейти к: навигация, поиск

Участник:Kabanov

247 байт добавлено, 16:15, 5 августа 2015
Нет описания правки
Также как и алгоритм Эппштейна, K* выполняет поиск пути на графе <tex>G</tex> и использует граф путей <tex>P(G)</tex>. Граф путей ищется с помощью алгоритма Дейкстры для того, чтобы вычислить пути <tex>s-t</tex> в виде последовательности запасных путей. Общий принцип работы алгоритма K* следующий:
  1) K* применяет A* на графе <tex>G</tex> вместо обратного алгоритма Дейкстры, который использует алгоритм Eppsteinиспользуется алгоритмом Эппштейна.
2) Мы запускаем A* на <tex>G</tex> и Дейкстру на <tex>P(G)</tex> в поочередном порядке, который позволяет Дейкстре вычислить требуемые пути до заверешения полного поиска алгоритма A* на графе <tex>G</tex> .
== 4.1 Поиск A* на G ==
K* применяет A* к входному графу <tex>G</tex> для того, чтобы построить дерево поиска <tex>T</tex>. Заметим, что A*, также как и алгоритм Дейкстры, строит дерево поиска в процессе нахождения кратчайшего пути <tex>s-t</tex> . Эти деревья формируются с помощью ссылок на родительские узлы, которые храняться хранятся в том время, как A* производит итерации для того, чтобы восстановить путь <tex>s-t</tex>, когда вершина <tex>t</tex> ещё не найдена. Запасные ребра, открытые в процессе поиска A* на графе G, немедленно добавляются в граф P(G), структура которого будет объясняться в разделе 4.3.
В отличие от алгоритма Эппштейна в K* A* применяется к графу <tex>G</tex> в прямом направлениив отличие от алгоритма Эппштейна, из-за чего корнем дерева <tex>T</tex> является вершина начальная <tex>s</tex>. Это необходимо для того, чтобы была возможность работать c неявным описанием графа <tex>G</tex> через функцию successor (функция, возвращающая список исходящих ребер из данной вершины). На протяжение статьи будем считать граф <tex>G</tex> конечным, если не будет сказано иное. Заметим, что А* корректен на конечных графах. Будем следовать литературному соглашению, предполагая, что стоимость бесконечного пути неограниченна.
== 4.2 Стоимость объезда ==
Для ребра <tex>(u, v)</tex> стоимость '''объезда ''' (англ. ''detour'') <tex>\delta(u, v)</tex> представляет стоимость '''ущерба ''' (англ. ''disadvantage'') из-за взятия ребра объезда <tex>(u,v)</tex> в сравнении с кратчайшим путем <tex>s-t</tex> через <tex>v</tex>. Ни длина кратчайшего пути <tex>s-t</tex> через <tex>v</tex>, ни длина пути <tex>s-t</tex>, включающего запапасные ребра <tex>(u, v)</tex> не известны, когда A* обнаруживает <tex>(u, v)</tex>. Обе длины могут быть оценены с помощью функции оценки <tex>f</tex>, которая использует эвристическую функцию <tex>h</tex>. Путь Пусть <tex>f(v)</tex> будет <tex>f</tex>-значением с соответствии с деревом поиска <tex>T</tex> и <tex>f_u(v)</tex> будет <tex>f</tex>-значанием значением в соответствии с родителем u, т.е. <tex>f_u(v) = g(u) + c(u, v) + h(v)</tex>. Тогда <tex>\delta(u, v)</tex> может быть определена так:
<tex>\delta(u, v) = f_u(v) - f(v) = g(u) + c(u, v) + h(v) - g(v) - h(v) = g(u) + c(u, v) - g(v)</tex>
Заметим, что <tex>\delta(u, v)</tex> дает точную объездную метрику, поскольку функция оценки оценочное <tex>h</tex>-значения значение не появляется в определении функции <tex>\delta(u, v)</tex>.
== 4.3 Структура графа путей ==
Структура графа путей <tex>P(G)</tex> довольно сложная. В принципе, <tex>P(G)</tex> будет ориентированным графом, вершины которого соответствуют ребрам в исходном графе <tex>G</tex>. Он будет организован как коллекция взаимосвязанных '''куч ''' (англ. ''heap''). 2 бинарные минимальные кучи минимума присвоены к каждой вершине <tex>v</tex> в графе <tex>G</tex>, которые называются '''входящей кучей ''' (англ. ''incoming heap'')<tex>H_{in}(v)</tex> и '''деревянной кучей ''' (англ. ''tree heap'') <tex>H_{T}(v)</tex>. Эти кучи являются базисом <tex>P(G)</tex>. Как мы покажем далее, испльзование использование этих куч также играет главную роль в поддержании асимптотической сложности K*, также как в EA и LVEA.
Входящая куча <tex>H_{in}(v)</tex> содержит узлы для каждого запасного ребра к вершине <tex>v</tex>, которые до сих пор были обнаружены A*. Узлы <tex>H_{in}(v)</tex> будут упорядочены в соответствии с <tex>\delta</tex>-значением соответствующих переходов. Узел владеющий ребром с минимальной стоимостью ущерба будет расположен на вершине кучи. Мы ограничим структуру кучи <tex>H_{in}(v)</tex> таким образом, что её корень в отличие от остальных узлов, имеет будет иметь не более 1 ребенка. Мы обозначим Обозначим его <tex>root_{in}(v)</tex>.
Деревянная куча <tex>H_{T}(v)</tex> для произвольной вершины <tex>v</tex> строится следующим образом. Если <tex>v</tex> - стартовая вершина, т.е. <tex>v = s</tex>, то <tex>H_{T}(v)</tex> будет изначально пустой кучей. Затем узел в неё будет добавлен <tex>root_{in}(s)</tex>, если <tex>H_{in}(s)</tex> не пустая. Если <tex>v</tex> не стартовая вершина, то пусть вершина <tex>u</tex> будет родителем вершины <tex>v</tex> в дереве поиска <tex>T</tex>. Мы можем представить, что <tex>H_{T}(v)</tex> конструируется как копия <tex>H_{T}(u)</tex>, в которую добавлен <tex>root_{in}(v)</tex>. Если <tex>H_{in}(v)</tex> пустая, то <tex>H_{T}(v)</tex> идентична <tex>H_{T}(u)</tex>. Однако, для экономии памяти мы создаем только дешевую копию <tex>H_{T}(u)</tex>. Это осуществляется через создание копий только тех узлов кучи, которые лежат на обновленном пути в <tex>H_{T}(u)</tex>. Оставшаяся часть <tex>H_{T}(u)</tex> не копируется. Другими словами, <tex>root_{in}(v)</tex> вставляется в <tex>H_{T}(u)</tex> неразрушающим путем так, что структура <tex>H_{T}(u)</tex> сохраняется. В куче <tex>H_{T}(v)</tex> 1 или 2 ребенка могут быть присоединены к <tex>root_{in}(v)</tex> могут быть присоединены 1 или 2 ребенка. К тому же, <tex>root_{in}(v)</tex> хранит только 1 собственного ребенка из <tex>H_{in}(v)</tex>. Мы обозначим корень <tex>H_{T}(v)</tex> как <tex>R(v)</tex>.
Обратимся к ребрамНазовем ребра, которые берут начало из входящих или деревянных куч, как к кучным ребрам'''кучными ребрами''' (англ. ''heap edges''). Сформулируем следующую лемму.
{{Лемма
|about=1
|statement=Все узлы, которые достижимы из <tex>R(v)</tex> через кучные ребра , для каждой вершины <tex>v</tex>, формируют тернарную кучу, упорядоченную в соответствии с <tex>\delta</tex>-значением. Мы назовем такую кучу графовой кучей вершины <tex>v</tex> и обозначим его её как <tex>H_{G}(v)</tex>.
|proof=...
}}
Финальная структура <tex>P(G)</tex> получется из входящих и деревянных куч следующим образом. К каждому узлу <tex>n</tex> из <tex>P(G)</tex>, несущему ребро <tex>(u,v)</tex>, мы присоединим указатель, ссылающийся на <tex>R(u)</tex>, который является корневым узлом <tex>H_{T}(u)</tex>. Мы назовем такие указатели '''кросс-ребрами''' (англ. ''cross edges''), в то время как указатели, возникающие из куч названы кучными ребрами, как упоминалось раньше. Более того, мы добавим специальный узел <tex>\mathrm{R}</tex> в <tex>P(G)</tex> с одним выходящим кросс-ребром к <tex>R(t)</tex>.
Более того, мы определим весовую функцию <tex>\Delta</tex> на ребрах из <tex>P(G)</tex>. Пусть <tex>(n,n')</tex> обозначает ребро в <tex>P(G)</tex>, и пусть <tex>e</tex> и <tex>e'</tex> обозначают ребра из <tex>G</tex> , соответствующие узлам <tex>n</tex> и <tex>n'</tex>. Тогда определим <tex>\Delta(n,n')</tex> следующим образом:
<tex>
</tex>
Лемма 1 подразумевает, что куча упорядоченная в соответствии с <tex>\delta</tex>-значанием поддерживается по любому кучному ребру для любого кучного ребра из <tex>P(G)</tex>. Эта упорядочивание кучи подразумевает, что <tex>\Delta(n,n')</tex> неотрицательна для любого кучного ребра <tex>(n,n')</tex>. Следовательно, <tex>\Delta</tex> также неотрицательна, т.е. <tex>\Delta(n,n') >= 0</tex> для любого ребра <tex>(n,n')</tex> в <tex>P(G)</tex>. Стоимость пути <tex>\sigma</tex>, т.е. <tex>C_{P(G)}(\sigma)</tex> равна <tex>\sum_{e \in \sigma}\Delta(e)</tex>.
...
{{Лемма
|about=2
|statement=Пусть <tex>n</tex> будет узлов узлом графовой кучи <tex>H_{G}(w)</tex> для какой-нибудь вершины <tex>w</tex>. Пусть <tex>(u,v)</tex> будет ребром связанным с <tex>n</tex>. Тогда существует путь в дереве поиска <tex>T</tex> из <tex>v</tex> в <tex>w</tex>.
|proof=...
}}
418
правок

Навигация