212
правок
Изменения
→Двупроходный алгоритм
Найти [[Отношение вершинной двусвязности|компоненты вершинной двусвязности]] неориентированного графа можно с помощью [[Обход_в_глубину,_цвета_вершин |обхода в глубину]].
'''Первый проход:
Используем первый проход, чтобы [[Использование обхода в глубину для поиска точек сочленения|найти точки сочленения.]] <br>
'''Второй проход:
[[Точка сочленения, эквивалентные определения|Точка сочленения]] принадлежит как минимум двум компонентам вершинной двусвязности.
Вершина <tex> v \ne root </tex> является точкой сочленения, если у нее есть сын <tex> u : returnup[u] \geqslant entertin[v] </tex>. <br> Это также значит, что ребро <tex> vu </tex> содержится в другой компоненте вершинной двусвязности, нежели ребро по которому мы пришли в вершину <tex> v </tex> , используя поиск в глубину. Получается, что перейдя по этому ребру, мы окажемся в другой компоненте вершинной двусвязности. <br>
Используем это свойство, чтобы окрасить компоненты вершинной двусвязности в различные цвета.<br>
=== Псевдокод второго прохода ===
|-
|
|width = "310px" |[[Файл:Vertex_doubleconnection_1.png|thumb|center|400px|Компоненты обозначены разным цветом]]
|}
Ребра каждой из компонент вершинной двусвязности окажутся окрашенными в свой цвет.
<br>
В алгоритме выполняется два прохода <tex>dfs</tex>, каждый из которых работает <tex>O(|V | + |E|)</tex>. Значит время работы алгоритма <tex>O(|V | + |E|)</tex>.
== Однопроходный алгоритм ==